# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from py_paddle import swig_paddle import paddle.proto.ParameterConfig_pb2 import util import unittest import numpy class TestGradientMachine(unittest.TestCase): def test_create_gradient_machine(self): conf_file_path = "./testTrainConfig.py" trainer_config = swig_paddle.TrainerConfig.createFromTrainerConfigFile( conf_file_path) self.assertIsNotNone(trainer_config) opt_config = trainer_config.getOptimizationConfig() model_config = trainer_config.getModelConfig() self.assertIsNotNone(model_config) machine = swig_paddle.GradientMachine.createByModelConfig( model_config, swig_paddle.CREATE_MODE_NORMAL, swig_paddle.ParameterOptimizer.create(opt_config).getParameterTypes( )) self.assertIsNotNone(machine) ipt, _ = util.loadMNISTTrainData() output = swig_paddle.Arguments.createArguments(0) optimizers = {} # Initial Machine Parameter all to 0.1 for param in machine.getParameters(): assert isinstance(param, swig_paddle.Parameter) val = param.getBuf(swig_paddle.PARAMETER_VALUE) assert isinstance(val, swig_paddle.Vector) arr = numpy.full((len(val), ), 0.1, dtype="float32") val.copyFromNumpyArray(arr) param_config = param.getConfig().toProto() assert isinstance(param_config, paddle.proto.ParameterConfig_pb2.ParameterConfig) opt = swig_paddle.ParameterOptimizer.create(opt_config) optimizers[param.getID()] = opt num_rows = param_config.dims[1] opt.init(num_rows, param.getConfig()) for k in optimizers: opt = optimizers[k] opt.startPass() batch_size = ipt.getSlotValue(0).getHeight() for k in optimizers: opt = optimizers[k] opt.startBatch(batch_size) machine.forward(ipt, output, swig_paddle.PASS_TRAIN) self.assertEqual(1, output.getSlotNum()) self.isCalled = False def backward_callback(param_): self.isCalled = isinstance(param_, swig_paddle.Parameter) assert isinstance(param_, swig_paddle.Parameter) vec = param_.getBuf(swig_paddle.PARAMETER_VALUE) assert isinstance(vec, swig_paddle.Vector) vec = vec.copyToNumpyArray() for val_ in vec: self.assertTrue( util.doubleEqual(val_, 0.1)) # Assert All Value is 0.1 vecs = list(param_.getBufs()) opt_ = optimizers[param_.getID()] opt_.update(vecs, param_.getConfig()) machine.backward(backward_callback) for k in optimizers: opt = optimizers[k] opt.finishBatch() for k in optimizers: opt = optimizers[k] opt.finishPass() self.assertTrue(self.isCalled) def test_train_one_pass(self): conf_file_path = './testTrainConfig.py' trainer_config = swig_paddle.TrainerConfig.createFromTrainerConfigFile( conf_file_path) model_config = trainer_config.getModelConfig() machine = swig_paddle.GradientMachine.createByModelConfig(model_config) at_end = False output = swig_paddle.Arguments.createArguments(0) if not at_end: input_, at_end = util.loadMNISTTrainData(1000) machine.forwardBackward(input_, output, swig_paddle.PASS_TRAIN) if __name__ == '__main__': swig_paddle.initPaddle('--use_gpu=0') unittest.main()