# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import sys import numpy as np from paddle.fluid import core from paddle.fluid import framework from paddle.fluid.imperative import base __all__ = ['Layer', 'PyLayer'] class Layer(core.Layer): """Layers composed of operators.""" def __init__(self, dtype=core.VarDesc.VarType.FP32, name=None): self._once_built = False self._dtype = dtype def _build_once(self, inputs): pass def __call__(self, *inputs): if not self._once_built: self._build_once(*inputs) self._once_built = True outputs = self.forward(*inputs) return outputs def forward(self, *inputs): raise NotImplementedError def backward(self, *inputs): raise ValueError("Layer shouldn't implement backward") class PyLayer(core.PyLayer): """Layers composed of user-defined python codes.""" def __init__(self): super(PyLayer, self).__init__() @staticmethod def forward(inputs): raise NotImplementedError @staticmethod def backward(douts): raise NotImplementedError @classmethod def __call__(cls, inputs): tracer = framework._imperative_tracer() block = framework.default_main_program().current_block() inputs = [x._ivar for x in inputs] if not hasattr(cls, 'forward_id'): cls.forward_id = core.PyLayer.num_funcs() + 1 PyLayer.register_func(cls.forward_id, cls.forward) cls.backward_id = core.PyLayer.num_funcs() + 1 PyLayer.register_func(cls.backward_id, cls.backward) iop = core.OpBase() iop.forward_id = cls.forward_id iop.backward_id = cls.backward_id block.ops.append(iop) ivars = tracer.py_trace(iop, inputs, False) # ivars = core.PyLayer.apply(cls.forward, inputs) ret = [] for ivar in ivars: tensor = ivar.value.get_tensor() py_var = framework.Variable( block, type=core.VarDesc.VarType.LOD_TENSOR, name=None, shape=tensor.shape(), dtype=tensor._dtype(), ivar=ivar) ret.append(py_var) return ret