# S2ANet Model ## Content - [S2ANet Model](#s2anet-model) - [Content](#content) - [Introduction](#introduction) - [Start Training](#start-training) - [1. Train](#1-train) - [2. Evaluation](#2-evaluation) - [3. Prediction](#3-prediction) - [4. DOTA Data evaluation](#4-dota-data-evaluation) - [Model Library](#model-library) - [S2ANet Model](#s2anet-model-1) - [Predict Deployment](#predict-deployment) - [Citations](#citations) ## Introduction [S2ANet](https://arxiv.org/pdf/2008.09397.pdf) is used to detect rotated objects and acheives 74.0 mAP on DOTA 1.0 dataset. ## Start Training ### 2. Train Single GPU Training ```bash export CUDA_VISIBLE_DEVICES=0 python tools/train.py -c configs/rotate/s2anet/s2anet_1x_spine.yml ``` Multiple GPUs Training ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/rotate/s2anet/s2anet_1x_spine.yml ``` You can use `--eval`to enable train-by-test. ### 3. Evaluation ```bash python tools/eval.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=output/s2anet_1x_spine/model_final.pdparams # Use a trained model to evaluate python tools/eval.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=https://paddledet.bj.bcebos.com/models/s2anet_1x_spine.pdparams ``` ### 4. Prediction Executing the following command will save the image prediction results to the `output` folder. ```bash python tools/infer.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=output/s2anet_1x_spine/model_final.pdparams --infer_img=demo/39006.jpg --draw_threshold=0.3 ``` Prediction using models that provide training: ```bash python tools/infer.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=https://paddledet.bj.bcebos.com/models/s2anet_1x_spine.pdparams --infer_img=demo/39006.jpg --draw_threshold=0.3 ``` ### 5. DOTA Data evaluation Execute the following command, will save each image prediction result in `output` folder txt text with the same folder name. ``` python tools/infer.py -c configs/rotate/s2anet/s2anet_alignconv_2x_dota.yml -o weights=./weights/s2anet_alignconv_2x_dota.pdparams --infer_dir=/path/to/test/images --output_dir=output --visualize=False --save_results=True ``` Refering to [DOTA Task](https://captain-whu.github.io/DOTA/tasks.html), You need to submit a zip file containing results for all test images for evaluation. The detection results of each category are stored in a txt file, each line of which is in the following format `image_id score x1 y1 x2 y2 x3 y3 x4 y4`. To evaluate, you should submit the generated zip file to the Task1 of [DOTA Evaluation](https://captain-whu.github.io/DOTA/evaluation.html). You can execute the following command to generate the file ``` python configs/rotate/tools/generate_result.py --pred_txt_dir=output/ --output_dir=submit/ --data_type=dota10 zip -r submit.zip submit ``` ## Model Library ### S2ANet Model | Model | Conv Type | mAP | Model Download | Configuration File | |:-----------:|:----------:|:--------:| :----------:| :---------: | | S2ANet | Conv | 71.42 | [model](https://paddledet.bj.bcebos.com/models/s2anet_conv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/rotate/s2anet/s2anet_conv_2x_dota.yml) | | S2ANet | AlignConv | 74.0 | [model](https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/rotate/s2anet/s2anet_alignconv_2x_dota.yml) | **Attention:** `multiclass_nms` is used here, which is slightly different from the original author's use of NMS. ## Predict Deployment The inputs of the `multiclass_nms` operator in Paddle support quadrilateral inputs, so deployment can be done without relying on the rotating frame IOU operator. Please refer to the deployment tutorial[Predict deployment](../../deploy/README_en.md) ## Citations ``` @article{han2021align, author={J. {Han} and J. {Ding} and J. {Li} and G. -S. {Xia}}, journal={IEEE Transactions on Geoscience and Remote Sensing}, title={Align Deep Features for Oriented Object Detection}, year={2021}, pages={1-11}, doi={10.1109/TGRS.2021.3062048}} @inproceedings{xia2018dota, title={DOTA: A large-scale dataset for object detection in aerial images}, author={Xia, Gui-Song and Bai, Xiang and Ding, Jian and Zhu, Zhen and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={3974--3983}, year={2018} } ```