# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division import collections import math import re from paddle import fluid from paddle.fluid.regularizer import L2Decay from ppdet.core.workspace import register __all__ = ['EfficientNet'] GlobalParams = collections.namedtuple('GlobalParams', [ 'batch_norm_momentum', 'batch_norm_epsilon', 'width_coefficient', 'depth_coefficient', 'depth_divisor', 'min_depth', 'drop_connect_rate', 'relu_fn', 'batch_norm', 'use_se', 'local_pooling', 'condconv_num_experts', 'clip_projection_output', 'blocks_args', 'fix_head_stem' ]) BlockArgs = collections.namedtuple('BlockArgs', [ 'kernel_size', 'num_repeat', 'input_filters', 'output_filters', 'expand_ratio', 'id_skip', 'stride', 'se_ratio', 'conv_type', 'fused_conv', 'super_pixel', 'condconv' ]) GlobalParams.__new__.__defaults__ = (None, ) * len(GlobalParams._fields) BlockArgs.__new__.__defaults__ = (None, ) * len(BlockArgs._fields) def _decode_block_string(block_string): assert isinstance(block_string, str) ops = block_string.split('_') options = {} for op in ops: splits = re.split(r'(\d.*)', op) if len(splits) >= 2: key, value = splits[:2] options[key] = value assert (('s' in options and len(options['s']) == 1) or (len(options['s']) == 2 and options['s'][0] == options['s'][1])) return BlockArgs( kernel_size=int(options['k']), num_repeat=int(options['r']), input_filters=int(options['i']), output_filters=int(options['o']), expand_ratio=int(options['e']), id_skip=('noskip' not in block_string), se_ratio=float(options['se']) if 'se' in options else None, stride=int(options['s'][0]), conv_type=int(options['c']) if 'c' in options else 0, fused_conv=int(options['f']) if 'f' in options else 0, super_pixel=int(options['p']) if 'p' in options else 0, condconv=('cc' in block_string)) def get_model_params(scale): block_strings = [ 'r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25', 'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25', 'r3_k5_s11_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25', 'r1_k3_s11_e6_i192_o320_se0.25', ] block_args = [] for block_string in block_strings: block_args.append(_decode_block_string(block_string)) params_dict = { # width, depth 'b0': (1.0, 1.0), 'b1': (1.0, 1.1), 'b2': (1.1, 1.2), 'b3': (1.2, 1.4), 'b4': (1.4, 1.8), 'b5': (1.6, 2.2), 'b6': (1.8, 2.6), 'b7': (2.0, 3.1), 'l2': (4.3, 5.3), } w, d = params_dict[scale] global_params = GlobalParams( blocks_args=block_strings, batch_norm_momentum=0.99, batch_norm_epsilon=1e-3, drop_connect_rate=0 if scale == 'b0' else 0.2, width_coefficient=w, depth_coefficient=d, depth_divisor=8, min_depth=None, fix_head_stem=False, use_se=True, clip_projection_output=False) return block_args, global_params def round_filters(filters, global_params, skip=False): multiplier = global_params.width_coefficient if skip or not multiplier: return filters divisor = global_params.depth_divisor filters *= multiplier min_depth = global_params.min_depth or divisor new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor) if new_filters < 0.9 * filters: # prevent rounding by more than 10% new_filters += divisor return int(new_filters) def round_repeats(repeats, global_params, skip=False): multiplier = global_params.depth_coefficient if skip or not multiplier: return repeats return int(math.ceil(multiplier * repeats)) def conv2d(inputs, num_filters, filter_size, stride=1, padding='SAME', groups=1, use_bias=False, name='conv2d'): param_attr = fluid.ParamAttr(name=name + '_weights') bias_attr = False if use_bias: bias_attr = fluid.ParamAttr( name=name + '_offset', regularizer=L2Decay(0.)) feats = fluid.layers.conv2d( inputs, num_filters, filter_size, groups=groups, name=name, stride=stride, padding=padding, param_attr=param_attr, bias_attr=bias_attr) return feats def batch_norm(inputs, momentum, eps, name=None): param_attr = fluid.ParamAttr(name=name + '_scale', regularizer=L2Decay(0.)) bias_attr = fluid.ParamAttr(name=name + '_offset', regularizer=L2Decay(0.)) return fluid.layers.batch_norm( input=inputs, momentum=momentum, epsilon=eps, name=name, moving_mean_name=name + '_mean', moving_variance_name=name + '_variance', param_attr=param_attr, bias_attr=bias_attr) def _drop_connect(inputs, prob, mode): if mode != 'train': return inputs keep_prob = 1.0 - prob inputs_shape = fluid.layers.shape(inputs) random_tensor = keep_prob + fluid.layers.uniform_random(shape=[inputs_shape[0], 1, 1, 1], min=0., max=1.) binary_tensor = fluid.layers.floor(random_tensor) output = inputs / keep_prob * binary_tensor return output def mb_conv_block(inputs, input_filters, output_filters, expand_ratio, kernel_size, stride, id_skip, drop_connect_rate, momentum, eps, mode, se_ratio=None, name=None): feats = inputs num_filters = input_filters * expand_ratio if expand_ratio != 1: feats = conv2d(feats, num_filters, 1, name=name + '_expand_conv') feats = batch_norm(feats, momentum, eps, name=name + '_bn0') feats = fluid.layers.swish(feats) feats = conv2d( feats, num_filters, kernel_size, stride, groups=num_filters, name=name + '_depthwise_conv') feats = batch_norm(feats, momentum, eps, name=name + '_bn1') feats = fluid.layers.swish(feats) if se_ratio is not None: filter_squeezed = max(1, int(input_filters * se_ratio)) squeezed = fluid.layers.pool2d( feats, pool_type='avg', global_pooling=True) squeezed = conv2d( squeezed, filter_squeezed, 1, use_bias=True, name=name + '_se_reduce') squeezed = fluid.layers.swish(squeezed) squeezed = conv2d( squeezed, num_filters, 1, use_bias=True, name=name + '_se_expand') feats = feats * fluid.layers.sigmoid(squeezed) feats = conv2d(feats, output_filters, 1, name=name + '_project_conv') feats = batch_norm(feats, momentum, eps, name=name + '_bn2') if id_skip and stride == 1 and input_filters == output_filters: if drop_connect_rate: feats = _drop_connect(feats, drop_connect_rate, mode) feats = fluid.layers.elementwise_add(feats, inputs) return feats @register class EfficientNet(object): """ EfficientNet, see https://arxiv.org/abs/1905.11946 Args: scale (str): compounding scale factor, 'b0' - 'b7'. use_se (bool): use squeeze and excite module. norm_type (str): normalization type, 'bn' and 'sync_bn' are supported """ __shared__ = ['norm_type'] def __init__(self, scale='b0', use_se=True, norm_type='bn'): assert scale in ['b' + str(i) for i in range(8)], \ "valid scales are b0 - b7" assert norm_type in ['bn', 'sync_bn'], \ "only 'bn' and 'sync_bn' are supported" super(EfficientNet, self).__init__() self.norm_type = norm_type self.scale = scale self.use_se = use_se def __call__(self, inputs, mode): assert mode in ['train', 'test'], \ "only 'train' and 'test' mode are supported" blocks_args, global_params = get_model_params(self.scale) momentum = global_params.batch_norm_momentum eps = global_params.batch_norm_epsilon num_filters = round_filters(blocks_args[0].input_filters, global_params, global_params.fix_head_stem) feats = conv2d( inputs, num_filters=num_filters, filter_size=3, stride=2, name='_conv_stem') feats = batch_norm(feats, momentum=momentum, eps=eps, name='_bn0') feats = fluid.layers.swish(feats) layer_count = 0 num_blocks = sum([block_arg.num_repeat for block_arg in blocks_args]) feature_maps = [] for block_arg in blocks_args: # Update block input and output filters based on depth multiplier. block_arg = block_arg._replace( input_filters=round_filters(block_arg.input_filters, global_params), output_filters=round_filters(block_arg.output_filters, global_params), num_repeat=round_repeats(block_arg.num_repeat, global_params)) # The first block needs to take care of stride, # and filter size increase. drop_connect_rate = global_params.drop_connect_rate if drop_connect_rate: drop_connect_rate *= float(layer_count) / num_blocks feats = mb_conv_block( feats, block_arg.input_filters, block_arg.output_filters, block_arg.expand_ratio, block_arg.kernel_size, block_arg.stride, block_arg.id_skip, drop_connect_rate, momentum, eps, mode, se_ratio=block_arg.se_ratio, name='_blocks.{}.'.format(layer_count)) layer_count += 1 # Other block if block_arg.num_repeat > 1: block_arg = block_arg._replace(input_filters=block_arg.output_filters, stride=1) for _ in range(block_arg.num_repeat - 1): drop_connect_rate = global_params.drop_connect_rate if drop_connect_rate: drop_connect_rate *= float(layer_count) / num_blocks feats = mb_conv_block( feats, block_arg.input_filters, block_arg.output_filters, block_arg.expand_ratio, block_arg.kernel_size, block_arg.stride, block_arg.id_skip, drop_connect_rate, momentum, eps, mode, se_ratio=block_arg.se_ratio, name='_blocks.{}.'.format(layer_count)) layer_count += 1 feature_maps.append(feats) return list(feature_maps[i] for i in [2, 4, 6])