# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn.functional as F from ppdet.core.workspace import register, serializable __all__ = ['CTFocalLoss'] @register @serializable class CTFocalLoss(object): """ CTFocalLoss Args: loss_weight (float): loss weight gamma (float): gamma parameter for Focal Loss """ def __init__(self, loss_weight=1., gamma=2.0): self.loss_weight = loss_weight self.gamma = gamma def __call__(self, pred, target): """ Calculate the loss Args: pred(Tensor): heatmap prediction target(Tensor): target for positive samples Return: ct_focal_loss (Tensor): Focal Loss used in CornerNet & CenterNet. Note that the values in target are in [0, 1] since gaussian is used to reduce the punishment and we treat [0, 1) as neg example. """ fg_map = paddle.cast(target == 1, 'float32') fg_map.stop_gradient = True bg_map = paddle.cast(target < 1, 'float32') bg_map.stop_gradient = True neg_weights = paddle.pow(1 - target, 4) * bg_map pos_loss = 0 - paddle.log(pred) * paddle.pow(1 - pred, self.gamma) * fg_map neg_loss = 0 - paddle.log(1 - pred) * paddle.pow( pred, self.gamma) * neg_weights pos_loss = paddle.sum(pos_loss) neg_loss = paddle.sum(neg_loss) fg_num = paddle.sum(fg_map) ct_focal_loss = (pos_loss + neg_loss) / ( fg_num + paddle.cast(fg_num == 0, 'float32')) return ct_focal_loss * self.loss_weight