/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/selected_rows.h" namespace paddle { namespace operators { using LoDTensor = framework::LoDTensor; using SelectedRows = framework::SelectedRows; template class LookupTableKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* table_t = context.Input("W"); // float tensor auto* ids_t = context.Input("Ids"); // int tensor auto* output_t = context.Output("Out"); // float tensor int64_t padding_idx = context.Attr("padding_idx"); int N = table_t->dims()[0]; int D = table_t->dims()[1]; auto* ids = ids_t->data(); auto* table = table_t->data(); auto* output = output_t->mutable_data(context.GetPlace()); for (int64_t i = 0; i < ids_t->numel(); ++i) { if (ids[i] == padding_idx) { memset(output + i * D, 0, D * sizeof(T)); } else { PADDLE_ENFORCE_LT(ids[i], N); PADDLE_ENFORCE_GE(ids[i], 0); memcpy(output + i * D, table + ids[i] * D, D * sizeof(T)); } } } }; template class LookupTableGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { bool is_sparse = context.Attr("is_sparse"); int64_t padding_idx = context.Attr("padding_idx"); if (is_sparse) { auto* ids = context.Input("Ids"); auto* table = context.Input("W"); auto* d_output = context.Input(framework::GradVarName("Out")); auto* d_table = context.Output(framework::GradVarName("W")); auto* ids_data = ids->data(); auto ids_dim = ids->dims(); framework::Vector new_rows; new_rows.reserve(ids_dim[0]); for (int64_t i = 0; i < ids_dim[0]; i++) { if (ids_data[i] == padding_idx) continue; // Paddings are not trainable and the gradient are not // necessary. new_rows.push_back(ids_data[i]); } d_table->set_rows(new_rows); auto* d_table_value = d_table->mutable_value(); d_table_value->Resize({ids_dim[0], table->dims()[1]}); d_table_value->mutable_data(context.GetPlace()); d_table->set_height(table->dims()[0]); auto* d_output_data = d_output->data(); auto* d_table_data = d_table_value->data(); PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims()); memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel()); } else { auto* ids = context.Input("Ids"); auto* d_output = context.Input(framework::GradVarName("Out")); auto* d_table = context.Output(framework::GradVarName("W")); auto* table = context.Input("W"); auto* ids_data = ids->data(); auto ids_dim = ids->dims(); int N = table->dims()[0]; int D = d_output->dims()[1]; auto* d_output_data = d_output->data(); auto* d_table_data = d_table->mutable_data(context.GetPlace()); memset(d_table_data, 0, d_table->numel() * sizeof(T)); for (int64_t i = 0; i < ids->numel(); ++i) { if (ids_data[i] == padding_idx) continue; // Paddings are not trainable and the gradient are not // necessary. PADDLE_ENFORCE_LT(ids_data[i], N); PADDLE_ENFORCE_GE(ids_data[i], 0); for (int j = 0; j < D; ++j) { d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j]; } } } } }; } // namespace operators } // namespace paddle