# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle import paddle.nn.functional as F from ppdet.core.workspace import register, serializable __all__ = ['ProbIoULoss'] def gbb_form(boxes): xy, wh, angle = paddle.split(boxes, [2, 2, 1], axis=-1) return paddle.concat([xy, wh.pow(2) / 12., angle], axis=-1) def rotated_form(a_, b_, angles): cos_a = paddle.cos(angles) sin_a = paddle.sin(angles) a = a_ * paddle.pow(cos_a, 2) + b_ * paddle.pow(sin_a, 2) b = a_ * paddle.pow(sin_a, 2) + b_ * paddle.pow(cos_a, 2) c = (a_ - b_) * cos_a * sin_a return a, b, c def probiou_loss(pred, target, eps=1e-3, mode='l1'): """ pred -> a matrix [N,5](x,y,w,h,angle - in radians) containing ours predicted box ;in case of HBB angle == 0 target -> a matrix [N,5](x,y,w,h,angle - in radians) containing ours target box ;in case of HBB angle == 0 eps -> threshold to avoid infinite values mode -> ('l1' in [0,1] or 'l2' in [0,inf]) metrics according our paper """ gbboxes1 = gbb_form(pred) gbboxes2 = gbb_form(target) x1, y1, a1_, b1_, c1_ = gbboxes1[:, 0], gbboxes1[:, 1], gbboxes1[:, 2], gbboxes1[:, 3], gbboxes1[:, 4] x2, y2, a2_, b2_, c2_ = gbboxes2[:, 0], gbboxes2[:, 1], gbboxes2[:, 2], gbboxes2[:, 3], gbboxes2[:, 4] a1, b1, c1 = rotated_form(a1_, b1_, c1_) a2, b2, c2 = rotated_form(a2_, b2_, c2_) t1 = 0.25 * ((a1 + a2) * (paddle.pow(y1 - y2, 2)) + (b1 + b2) * (paddle.pow(x1 - x2, 2))) + \ 0.5 * ((c1+c2)*(x2-x1)*(y1-y2)) t2 = (a1 + a2) * (b1 + b2) - paddle.pow(c1 + c2, 2) t3_ = (a1 * b1 - c1 * c1) * (a2 * b2 - c2 * c2) t3 = 0.5 * paddle.log(t2 / (4 * paddle.sqrt(F.relu(t3_)) + eps)) B_d = (t1 / t2) + t3 # B_d = t1 + t2 + t3 B_d = paddle.clip(B_d, min=eps, max=100.0) l1 = paddle.sqrt(1.0 - paddle.exp(-B_d) + eps) l_i = paddle.pow(l1, 2.0) l2 = -paddle.log(1.0 - l_i + eps) if mode == 'l1': probiou = l1 if mode == 'l2': probiou = l2 return probiou @serializable @register class ProbIoULoss(object): """ ProbIoU Loss, refer to https://arxiv.org/abs/2106.06072 for details """ def __init__(self, mode='l1', eps=1e-3): super(ProbIoULoss, self).__init__() self.mode = mode self.eps = eps def __call__(self, pred_rboxes, assigned_rboxes): return probiou_loss(pred_rboxes, assigned_rboxes, self.eps, self.mode)