English | [简体中文](README.md)
# FCOSR
## Content
- [Introduction](#Introduction)
- [Model Zoo](#Model-Zoo)
- [Getting Start](#Getting-Start)
- [Deployment](#Deployment)
- [Citations](#Citations)
## Introduction
[FCOSR](https://arxiv.org/abs/2111.10780) is one stage anchor-free model based on [FCOS](https://arxiv.org/abs/1904.01355). FCOSR focuses on the label assignment strategy for oriented bounding boxes and proposes ellipse center sampling method and fuzzy sample assignment strategy. In terms of loss, FCOSR uses [ProbIoU](https://arxiv.org/abs/2106.06072) to avoid boundary discontinuity problem.
## Model Zoo
| Model | Backbone | mAP | Lr Scheduler | Angle | Aug | GPU Number | images/GPU | download | config |
|:---:|:--------:|:----:|:---------:|:-----:|:--------:|:-----:|:------------:|:-------:|:------:|
| FCOSR-M | ResNeXt-50 | 76.62 | 3x | oc | - | 4 | 4 | [model](https://paddledet.bj.bcebos.com/models/fcosr_x50_3x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/fcosr/fcosr_x50_3x_dota.yml) |
**Notes:**
- if **GPU number** or **mini-batch size** is changed, **learning rate** should be adjusted according to the formula **lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault)**.
- Models in model zoo is trained and tested with single scale by default. If `MS` is indicated in the data augmentation column, it means that multi-scale training and multi-scale testing are used. If `RR` is indicated in the data augmentation column, it means that RandomRotate data augmentation is used for training.
## Getting Start
Refer to [Data-Preparation](../README_en.md#Data-Preparation) to prepare data.
### Training
Single GPU Training
``` bash
CUDA_VISIBLE_DEVICES=0 python tools/train.py -c configs/rotate/fcosr/fcosr_x50_3x_dota.yml
```
Multiple GPUs Training
``` bash
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/rotate/fcosr/fcosr_x50_3x_dota.yml
```
### Inference
Run the follow command to infer single image, the result of inference will be saved in `output` directory by default.
``` bash
python tools/infer.py -c configs/rotate/fcosr/fcosr_x50_3x_dota.yml -o weights=https://paddledet.bj.bcebos.com/models/fcosr_x50_3x_dota.pdparams --infer_img=demo/P0861__1.0__1154___824.png --draw_threshold=0.5
```
### Evaluation on DOTA Dataset
Refering to [DOTA Task](https://captain-whu.github.io/DOTA/tasks.html), You need to submit a zip file containing results for all test images for evaluation. The detection results of each category are stored in a txt file, each line of which is in the following format
`image_id score x1 y1 x2 y2 x3 y3 x4 y4`. To evaluate, you should submit the generated zip file to the Task1 of [DOTA Evaluation](https://captain-whu.github.io/DOTA/evaluation.html). You can run the following command to get the inference results of test dataset:
``` bash
python tools/infer.py -c configs/rotate/fcosr/fcosr_x50_3x_dota.yml -o weights=https://paddledet.bj.bcebos.com/models/fcosr_x50_3x_dota.pdparams --infer_dir=/path/to/test/images --output_dir=output_fcosr --visualize=False --save_results=True
```
Process the prediction results into the format required for the official website evaluation:
``` bash
python configs/rotate/tools/generate_result.py --pred_txt_dir=output_fcosr/ --output_dir=submit/ --data_type=dota10
zip -r submit.zip submit
```
## Deployment
Please refer to the deployment tutorial[Deployment](../../../deploy/README_en.md)
## Citations
```
@article{li2021fcosr,
title={Fcosr: A simple anchor-free rotated detector for aerial object detection},
author={Li, Zhonghua and Hou, Biao and Wu, Zitong and Jiao, Licheng and Ren, Bo and Yang, Chen},
journal={arXiv preprint arXiv:2111.10780},
year={2021}
}
@inproceedings{tian2019fcos,
title={Fcos: Fully convolutional one-stage object detection},
author={Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
pages={9627--9636},
year={2019}
}
@article{llerena2021gaussian,
title={Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection},
author={Llerena, Jeffri M and Zeni, Luis Felipe and Kristen, Lucas N and Jung, Claudio},
journal={arXiv preprint arXiv:2106.06072},
year={2021}
}
```