# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import logging logger = logging.getLogger(__name__) from ppdet.core.workspace import register, serializable from .dataset import DataSet @register @serializable class WIDERFaceDataSet(DataSet): """ Load WiderFace records with 'anno_path' Args: dataset_dir (str): root directory for dataset. image_dir (str): directory for images. anno_path (str): root directory for voc annotation data sample_num (int): number of samples to load, -1 means all with_background (bool): whether load background as a class. if True, total class number will be 2. default True. """ def __init__(self, dataset_dir=None, image_dir=None, anno_path=None, sample_num=-1, with_background=True): super(WIDERFaceDataSet, self).__init__( image_dir=image_dir, anno_path=anno_path, sample_num=sample_num, dataset_dir=dataset_dir, with_background=with_background) self.anno_path = anno_path self.sample_num = sample_num self.with_background = with_background self.roidbs = None self.cname2cid = None def load_roidb_and_cname2cid(self): anno_path = os.path.join(self.dataset_dir, self.anno_path) image_dir = os.path.join(self.dataset_dir, self.image_dir) txt_file = anno_path records = [] ct = 0 file_lists = _load_file_list(txt_file) cname2cid = widerface_label(self.with_background) for item in file_lists: im_fname = item[0] im_id = np.array([ct]) gt_bbox = np.zeros((len(item) - 2, 4), dtype=np.float32) gt_class = np.ones((len(item) - 2, 1), dtype=np.int32) for index_box in range(len(item)): if index_box >= 2: temp_info_box = item[index_box].split(' ') xmin = float(temp_info_box[0]) ymin = float(temp_info_box[1]) w = float(temp_info_box[2]) h = float(temp_info_box[3]) # Filter out wrong labels if w < 0 or h < 0: continue xmin = max(0, xmin) ymin = max(0, ymin) xmax = xmin + w ymax = ymin + h gt_bbox[index_box - 2] = [xmin, ymin, xmax, ymax] im_fname = os.path.join(image_dir, im_fname) if image_dir else im_fname widerface_rec = { 'im_file': im_fname, 'im_id': im_id, 'gt_bbox': gt_bbox, 'gt_class': gt_class, } # logger.debug if len(item) != 0: records.append(widerface_rec) ct += 1 if self.sample_num > 0 and ct >= self.sample_num: break assert len(records) > 0, 'not found any widerface in %s' % (anno_path) logger.debug('{} samples in file {}'.format(ct, anno_path)) self.roidbs, self.cname2cid = records, cname2cid def _load_file_list(input_txt): with open(input_txt, 'r') as f_dir: lines_input_txt = f_dir.readlines() file_dict = {} num_class = 0 for i in range(len(lines_input_txt)): line_txt = lines_input_txt[i].strip('\n\t\r') if '.jpg' in line_txt: if i != 0: num_class += 1 file_dict[num_class] = [] file_dict[num_class].append(line_txt) if '.jpg' not in line_txt: if len(line_txt) > 6: split_str = line_txt.split(' ') x1_min = float(split_str[0]) y1_min = float(split_str[1]) x2_max = float(split_str[2]) y2_max = float(split_str[3]) line_txt = str(x1_min) + ' ' + str(y1_min) + ' ' + str( x2_max) + ' ' + str(y2_max) file_dict[num_class].append(line_txt) else: file_dict[num_class].append(line_txt) return list(file_dict.values()) def widerface_label(with_background=True): labels_map = {'face': 1} if not with_background: labels_map = {k: v - 1 for k, v in labels_map.items()} return labels_map