import sklearn.datasets.mldata import sklearn.model_selection import numpy from common import DATA_HOME __all__ = ['train_creator', 'test_creator'] def __mnist_reader_creator__(data, target): def reader(): n_samples = data.shape[0] for i in xrange(n_samples): yield (data[i] / 255.0).astype(numpy.float32), int(target[i]) return reader TEST_SIZE = 10000 data = sklearn.datasets.mldata.fetch_mldata( "MNIST original", data_home=DATA_HOME) X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split( data.data, data.target, test_size=TEST_SIZE, random_state=0) def train_creator(): return __mnist_reader_creator__(X_train, y_train) def test_creator(): return __mnist_reader_creator__(X_test, y_test) def unittest(): assert len(list(test_creator()())) == TEST_SIZE if __name__ == '__main__': unittest()