from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle import fluid from ppdet.core.workspace import register from .meta_arch import BaseArch __all__ = ['FasterRCNN'] @register class FasterRCNN(BaseArch): __category__ = 'architecture' __inject__ = [ 'anchor', 'proposal', 'backbone', 'rpn_head', 'bbox_head', ] def __init__(self, anchor, proposal, backbone, rpn_head, bbox_head, rpn_only=False, mode='train'): super(FasterRCNN, self).__init__() self.anchor = anchor self.proposal = proposal self.backbone = backbone self.rpn_head = rpn_head self.bbox_head = bbox_head self.rpn_only = rpn_only self.mode = mode def forward(self, inputs, inputs_keys): self.gbd = self.build_inputs(inputs, inputs_keys) self.gbd['mode'] = self.mode # Backbone bb_out = self.backbone(self.gbd) self.gbd.update(bb_out) # RPN rpn_head_out = self.rpn_head(self.gbd) self.gbd.update(rpn_head_out) # Anchor anchor_out = self.anchor(self.gbd) self.gbd.update(anchor_out) # Proposal BBox proposal_out = self.proposal(self.gbd) self.gbd.update(proposal_out) # BBox Head bbox_head_out = self.bbox_head(self.gbd) self.gbd.update(bbox_head_out) if self.gbd['mode'] == 'infer': bbox_out = self.proposal.post_process(self.gbd) self.gbd.update(bbox_out) # result if self.gbd['mode'] == 'train': return self.loss(self.gbd) elif self.gbd['mode'] == 'infer': return self.infer(self.gbd) else: raise "Now, only support train or infer mode!" def loss(self, inputs): losses = [] rpn_cls_loss, rpn_reg_loss = self.rpn_head.loss(inputs) bbox_cls_loss, bbox_reg_loss = self.bbox_head.loss(inputs) losses = [rpn_cls_loss, rpn_reg_loss, bbox_cls_loss, bbox_reg_loss] loss = fluid.layers.sum(losses) out = { 'loss': loss, 'loss_rpn_cls': rpn_cls_loss, 'loss_rpn_reg': rpn_reg_loss, 'loss_bbox_cls': bbox_cls_loss, 'loss_bbox_reg': bbox_reg_loss, } return out def infer(self, inputs): outs = { "bbox": inputs['predicted_bbox'].numpy(), "bbox_nums": inputs['predicted_bbox_nums'].numpy(), 'im_id': inputs['im_id'].numpy(), 'im_shape': inputs['im_shape'].numpy() } return outs