# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import cPickle import os import random import time import numpy import paddle import paddle.dataset.imdb as imdb import paddle.fluid as fluid import paddle.batch as batch import paddle.fluid.profiler as profiler word_dict = imdb.word_dict() def crop_sentence(reader, crop_size): unk_value = word_dict[''] def __impl__(): for item in reader(): if len([x for x in item[0] if x != unk_value]) < crop_size: yield item return __impl__ def get_model(args): if args.use_reader_op: raise Exception( "stacked_dynamic_lstm do not support reader op for now.") lstm_size = 512 emb_dim = 512 crop_size = 1500 data = fluid.layers.data( name="words", shape=[1], lod_level=1, dtype='int64') sentence = fluid.layers.embedding( input=data, size=[len(word_dict), emb_dim]) sentence = fluid.layers.fc(input=sentence, size=lstm_size, act='tanh') rnn = fluid.layers.DynamicRNN() with rnn.block(): word = rnn.step_input(sentence) prev_hidden = rnn.memory(value=0.0, shape=[lstm_size]) prev_cell = rnn.memory(value=0.0, shape=[lstm_size]) def gate_common( ipt, hidden, size, ): gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True) gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False) gate = fluid.layers.sums(input=[gate0, gate1]) return gate forget_gate = fluid.layers.sigmoid( x=gate_common(word, prev_hidden, lstm_size)) input_gate = fluid.layers.sigmoid( x=gate_common(word, prev_hidden, lstm_size)) output_gate = fluid.layers.sigmoid( x=gate_common(word, prev_hidden, lstm_size)) cell_gate = fluid.layers.tanh( x=gate_common(word, prev_hidden, lstm_size)) cell = fluid.layers.sums(input=[ fluid.layers.elementwise_mul( x=forget_gate, y=prev_cell), fluid.layers.elementwise_mul( x=input_gate, y=cell_gate) ]) hidden = fluid.layers.elementwise_mul( x=output_gate, y=fluid.layers.tanh(x=cell)) rnn.update_memory(prev_cell, cell) rnn.update_memory(prev_hidden, hidden) rnn.output(hidden) last = fluid.layers.sequence_pool(rnn(), 'last') logit = fluid.layers.fc(input=last, size=2, act='softmax') loss = fluid.layers.cross_entropy( input=logit, label=fluid.layers.data( name='label', shape=[1], dtype='int64')) loss = fluid.layers.mean(x=loss) # add acc batch_size_tensor = fluid.layers.create_tensor(dtype='int64') batch_acc = fluid.layers.accuracy(input=logit, label=fluid.layers.data(name='label', \ shape=[1], dtype='int64'), total=batch_size_tensor) inference_program = fluid.default_main_program().clone() with fluid.program_guard(inference_program): inference_program = fluid.io.get_inference_program( target_vars=[batch_acc, batch_size_tensor]) adam = fluid.optimizer.Adam() train_reader = batch( paddle.reader.shuffle( crop_sentence(imdb.train(word_dict), crop_size), buf_size=25000), batch_size=args.batch_size * args.gpus) test_reader = batch( paddle.reader.shuffle( crop_sentence(imdb.test(word_dict), crop_size), buf_size=25000), batch_size=args.batch_size) return loss, inference_program, adam, train_reader, test_reader, batch_acc def to_lodtensor(data, place): seq_lens = [len(seq) for seq in data] cur_len = 0 lod = [cur_len] for l in seq_lens: cur_len += l lod.append(cur_len) flattened_data = numpy.concatenate(data, axis=0).astype("int64") flattened_data = flattened_data.reshape([len(flattened_data), 1]) res = fluid.LoDTensor() res.set(flattened_data, place) res.set_lod([lod]) return res