/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using DDim = framework::DDim; template using EigenTensor = framework::EigenTensor; struct SumFunctor { template void operator()(const Place& place, X& x, Y& y, const Dim& dim) { y.device(place) = x.sum(dim); } }; struct SumGradFunctor { template void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy, const Dim& dim, int size) { dx.device(place) = dy.broadcast(dim); } }; struct MeanFunctor { template void operator()(const Place& place, X& x, Y& y, const Dim& dim) { y.device(place) = x.mean(dim); } }; struct MeanGradFunctor { template void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy, const Dim& dim, int size) { dx.device(place) = dy.broadcast(dim) / dx.constant(size); } }; struct MaxFunctor { template void operator()(const Place& place, X& x, Y& y, const Dim& dim) { y.device(place) = x.maximum(dim); } }; struct MinFunctor { template void operator()(const Place& place, X& x, Y& y, const Dim& dim) { y.device(place) = x.minimum(dim); } }; struct MaxOrMinGradFunctor { template void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy, const Dim& dim, int size) { auto equals = x == y.broadcast(dim); auto ones = dx.constant(1); auto zeros = dx.constant(0); dx.device(place) = dy.broadcast(dim) * equals.select(ones, zeros); } }; template class ReduceKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { int rank = context.Input("X")->dims().size(); switch (rank) { case 1: ReduceCompute<1>(context); break; case 2: ReduceCompute<2>(context); break; case 3: ReduceCompute<3>(context); break; case 4: ReduceCompute<4>(context); break; case 5: ReduceCompute<5>(context); break; case 6: ReduceCompute<6>(context); break; } } private: template void ReduceCompute(const framework::ExecutionContext& context) const { auto* input = context.Input("X"); auto* output = context.Output("Out"); output->mutable_data(context.GetPlace()); auto x = EigenTensor::From(*input); auto x_rank = static_cast(x.dimensions().size()); int dim = static_cast(context.Attr("dim")); if (dim < 0) dim = x_rank + dim; auto reduce_dim = Eigen::array({{dim}}); // construct the squeezed output tensor bool keep_dim = context.Attr("keep_dim"); DDim dims = output->dims(); auto dims_vector = vectorize(dims); if (keep_dim && x_rank > 1) { dims_vector.erase(dims_vector.begin() + dim); dims = framework::make_ddim(dims_vector); } auto out = EigenTensor < T, D == 1 ? 1 : (D - 1) > ::From(*output, dims); auto& place = context.GetEigenDevice(); Functor functor; functor(place, x, out, reduce_dim); } }; template class ReduceGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { int rank = context.Input("X")->dims().size(); switch (rank) { case 1: ReduceCompute<1>(context); break; case 2: ReduceCompute<2>(context); break; case 3: ReduceCompute<3>(context); break; case 4: ReduceCompute<4>(context); break; case 5: ReduceCompute<5>(context); break; case 6: ReduceCompute<6>(context); break; } } private: template void ReduceCompute(const framework::ExecutionContext& context) const { auto* input0 = context.Input("X"); auto* input1 = context.Input("Out"); auto* input2 = context.Input(framework::GradVarName("Out")); auto* output = context.Output(framework::GradVarName("X")); if (output != nullptr) { output->mutable_data(context.GetPlace()); auto x = EigenTensor::From(*input0); auto x_grad = EigenTensor::From(*output); auto x_rank = static_cast(x.dimensions().size()); int dim = static_cast(context.Attr("dim")); if (dim < 0) dim = x_rank + dim; DDim dims = input0->dims(); dims[dim] = 1; auto x_reduce = EigenTensor::From(*input1, dims); auto x_reduce_grad = EigenTensor::From(*input2, dims); Eigen::array braodcast_dim; for (size_t i = 0; i < D; ++i) braodcast_dim[i] = 1; braodcast_dim[dim] = input0->dims()[dim]; auto& place = context.GetEigenDevice(); Functor functor; functor(place, x, x_reduce, x_grad, x_reduce_grad, braodcast_dim, braodcast_dim[dim]); } } }; // For EigenTensor unsupported reduce template class ReduceGradEigenFreeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* x = context.Input("X"); auto* out = context.Input("Out"); auto* x_grad = context.Output(framework::GradVarName("X")); auto* out_grad = context.Input(framework::GradVarName("Out")); if (x_grad != nullptr) { DDim dims = x->dims(); int rank = dims.size(); int dim = static_cast(context.Attr("dim")); if (dim < 0) dim = rank + dim; auto* x_data = x->data(); auto* x_grad_data = x_grad->mutable_data(context.GetPlace()); auto* out_data = out->data(); auto* out_grad_data = out_grad->data(); int outer_count = 1; int inner_count = 1; int mid_count = dims[dim]; for (int i = 0; i < dim; ++i) { outer_count *= dims[i]; } for (int i = dim + 1; i < rank; ++i) { inner_count *= dims[i]; } int x_offset = 0; // offset on raw data int out_offset = 0; // offset on reduced data Functor functor; for (int i = 0; i < outer_count; ++i) { for (int j = 0; j < inner_count; ++j) { out_offset = inner_count * i + j; for (int k = 0; k < mid_count; ++k) { x_offset = (inner_count * mid_count) * i + inner_count * k + j; functor(x_data + x_offset, out_data + out_offset, x_grad_data + x_offset, out_grad_data + out_offset, mid_count); } } } } } }; } // namespace operators } // namespace paddle