# 模型库和基线 - Python 2.7.1 - PaddlePaddle 1.5 - CUDA 9.0 - CUDNN 7.4 - NCCL 2.1.2 ## 通用设置 - SSD模型在VOC数据集中训练和测试,其余所有模型均在COCO17数据集中训练和测试。 - 除非特殊说明,所有ResNet骨干网络采用[ResNet-B](https://arxiv.org/pdf/1812.01187)结构。 - 对于RCNN和RetinaNet系列模型,训练阶段仅使用水平翻转作为数据增强,测试阶段不使用数据增强。 ## 训练策略 - 我们采用和[Detectron](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#training-schedules)相同的训练策略。 - 1x 策略表示:在总batch size为16时,初始学习率为0.02,在6万轮和8万轮后学习率分别下降10倍,最终训练9万轮。在总batch size为8时,初始学习率为0.01,在12万轮和16万轮后学习率分别下降10倍,最终训练18万轮。 - 2x 策略为1x策略的两倍,同时学习率调整位置也为1x的两倍。 ## ImageNet预训练模型 Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型均通过标准的Imagenet-1k数据集训练得到。[下载链接](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification#supported-models-and-performances) - 注:ResNet50模型通过余弦学习率调整策略训练得到。[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar) ## 基线 ### Faster & Mask R-CNN | 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 | Box AP | Mask AP | 下载 | | :------------------- | :------------- | :-----: | :-----: | :----: | :-----: | :----------------------------------------------------------: | | ResNet50 | Faster | 1 | 1x | 35.2 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar) | | ResNet50 | Faster | 1 | 2x | 37.1 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar) | | ResNet50 | Mask | 1 | 1x | 36.5 | 32.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_1x.tar) | | ResNet50 | Mask | 1 | 2x | 38.2 | 33.4 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_2x.tar) | | ResNet50-vd | Faster | 1 | 1x | 36.4 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar) | | ResNet50-FPN | Faster | 2 | 1x | 37.2 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar) | | ResNet50-FPN | Faster | 2 | 2x | 37.7 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar) | | ResNet50-FPN | Mask | 1 | 1x | 37.9 | 34.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_1x.tar) | | ResNet50-FPN | Mask | 1 | 2x | 38.7 | 34.7 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar) | | ResNet50-FPN | Cascade Faster | 2 | 1x | 40.9 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_r50_fpn_1x.tar) | | ResNet50-vd-FPN | Faster | 2 | 2x | 38.9 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar) | | ResNet50-vd-FPN | Mask | 1 | 2x | 39.8 | 35.4 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar) | | ResNet101 | Faster | 1 | 1x | 38.3 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar) | | ResNet101-FPN | Faster | 1 | 1x | 38.7 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar) | | ResNet101-FPN | Faster | 1 | 2x | 39.1 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar) | | ResNet101-FPN | Mask | 1 | 1x | 39.5 | 35.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar) | | ResNet101-vd-FPN | Faster | 1 | 1x | 40.5 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_1x.tar) | | ResNet101-vd-FPN | Faster | 1 | 2x | 40.8 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar) | | ResNet101-vd-FPN | Mask | 1 | 1x | 41.4 | 36.8 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar) | | ResNeXt101-vd-FPN | Faster | 1 | 1x | 42.2 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_1x.tar) | | ResNeXt101-vd-FPN | Faster | 1 | 2x | 41.7 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_2x.tar) | | ResNeXt101-vd-FPN | Mask | 1 | 1x | 42.9 | 37.9 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_1x.tar) | | ResNeXt101-vd-FPN | Mask | 1 | 2x | 42.6 | 37.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_2x.tar) | | SENet154-vd-FPN | Faster | 1 | 1.44x | 42.9 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd_fpn_s1x.tar) | | SENet154-vd-FPN | Mask | 1 | 1.44x | 44.0 | 38.7 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar) | ### Yolo v3 | 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 | Box AP | 下载 | | :----------- | :--: | :-----: | :-----: | :----: | :-------: | | DarkNet53 | 608 | 8 | 270e | 38.9 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) | | DarkNet53 | 416 | 8 | 270e | 37.5 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) | | DarkNet53 | 320 | 8 | 270e | 34.8 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) | | MobileNet-V1 | 608 | 8 | 270e | 29.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) | | MobileNet-V1 | 416 | 8 | 270e | 29.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) | | MobileNet-V1 | 320 | 8 | 270e | 27.1 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) | | ResNet34 | 608 | 8 | 270e | 36.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) | | ResNet34 | 416 | 8 | 270e | 34.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) | | ResNet34 | 320 | 8 | 270e | 31.4 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) | ### Yolo v3 基于Pasacl VOC数据集 | 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 | Box AP | 下载 | | :----------- | :--: | :-----: | :-----: | :----: | :-------: | | DarkNet53 | 608 | 8 | 270e | 83.5 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) | | DarkNet53 | 416 | 8 | 270e | 83.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) | | DarkNet53 | 320 | 8 | 270e | 82.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) | | MobileNet-V1 | 608 | 8 | 270e | 76.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) | | MobileNet-V1 | 416 | 8 | 270e | 76.7 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) | | MobileNet-V1 | 320 | 8 | 270e | 75.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) | | ResNet34 | 608 | 8 | 270e | 82.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) | | ResNet34 | 416 | 8 | 270e | 81.9 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) | | ResNet34 | 320 | 8 | 270e | 80.1 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) | **注意事项:** Yolo v3在8卡,总batch size为64下训练270轮。数据增强包括:mixup, 随机颜色失真,随机剪裁,随机扩张,随机插值法,随机翻转。Yolo v3在训练阶段对minibatch采用随机reshape,可以采用相同的模型测试不同尺寸图片,我们分别提供了尺寸为608/416/320大小的测试结果。 ### RetinaNet | 骨架网络 | 每张GPU图片个数 | 学习率策略 | Box AP | 下载 | | :----------- | :-----: | :-----: | :----: | :-------: | | ResNet50-FPN | 2 | 1x | 36.0 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r50_fpn_1x.tar) | | ResNet101-FPN | 2 | 1x | 37.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r101_fpn_1x.tar) | **注意事项:** RetinaNet系列模型中,在总batch size为16下情况下,初始学习率改为0.01。 ### SSD 基于Pascal VOC数据集 | 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 | Box AP | 下载 | | :----------- | :--: | :-----: | :-----: | :----: | :-------: | | MobileNet v1 | 300 | 32 | 120e | 73.13 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar) | **注意事项:** SSD在2卡,总batch size为64下训练120轮。数据增强包括:随机颜色失真,随机剪裁,随机扩张,随机翻转。