# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np class EvalAffine(object): def __init__(self, size, stride=64): super(EvalAffine, self).__init__() self.size = size self.stride = stride def __call__(self, image, im_info): s = self.size h, w, _ = image.shape trans, size_resized = get_affine_mat_kernel(h, w, s, inv=False) image_resized = cv2.warpAffine(image, trans, size_resized) return image_resized, im_info def get_affine_mat_kernel(h, w, s, inv=False): if w < h: w_ = s h_ = int(np.ceil((s / w * h) / 64.) * 64) scale_w = w scale_h = h_ / w_ * w else: h_ = s w_ = int(np.ceil((s / h * w) / 64.) * 64) scale_h = h scale_w = w_ / h_ * h center = np.array([np.round(w / 2.), np.round(h / 2.)]) size_resized = (w_, h_) trans = get_affine_transform( center, np.array([scale_w, scale_h]), 0, size_resized, inv=inv) return trans, size_resized def get_affine_transform(center, input_size, rot, output_size, shift=(0., 0.), inv=False): """Get the affine transform matrix, given the center/scale/rot/output_size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). scale (np.ndarray[2, ]): Scale of the bounding box wrt [width, height]. rot (float): Rotation angle (degree). output_size (np.ndarray[2, ]): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) Returns: np.ndarray: The transform matrix. """ assert len(center) == 2 assert len(input_size) == 2 assert len(output_size) == 2 assert len(shift) == 2 scale_tmp = input_size shift = np.array(shift) src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = rotate_point([0., src_w * -0.5], rot_rad) dst_dir = np.array([0., dst_w * -0.5]) src = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift src[2, :] = _get_3rd_point(src[0, :], src[1, :]) dst = np.zeros((3, 2), dtype=np.float32) dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans def get_warp_matrix(theta, size_input, size_dst, size_target): """This code is based on https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py Calculate the transformation matrix under the constraint of unbiased. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Args: theta (float): Rotation angle in degrees. size_input (np.ndarray): Size of input image [w, h]. size_dst (np.ndarray): Size of output image [w, h]. size_target (np.ndarray): Size of ROI in input plane [w, h]. Returns: matrix (np.ndarray): A matrix for transformation. """ theta = np.deg2rad(theta) matrix = np.zeros((2, 3), dtype=np.float32) scale_x = size_dst[0] / size_target[0] scale_y = size_dst[1] / size_target[1] matrix[0, 0] = np.cos(theta) * scale_x matrix[0, 1] = -np.sin(theta) * scale_x matrix[0, 2] = scale_x * ( -0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] * np.sin(theta) + 0.5 * size_target[0]) matrix[1, 0] = np.sin(theta) * scale_y matrix[1, 1] = np.cos(theta) * scale_y matrix[1, 2] = scale_y * ( -0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] * np.cos(theta) + 0.5 * size_target[1]) return matrix def rotate_point(pt, angle_rad): """Rotate a point by an angle. Args: pt (list[float]): 2 dimensional point to be rotated angle_rad (float): rotation angle by radian Returns: list[float]: Rotated point. """ assert len(pt) == 2 sn, cs = np.sin(angle_rad), np.cos(angle_rad) new_x = pt[0] * cs - pt[1] * sn new_y = pt[0] * sn + pt[1] * cs rotated_pt = [new_x, new_y] return rotated_pt def _get_3rd_point(a, b): """To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): point(x,y) b (np.ndarray): point(x,y) Returns: np.ndarray: The 3rd point. """ assert len(a) == 2 assert len(b) == 2 direction = a - b third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32) return third_pt class TopDownEvalAffine(object): """apply affine transform to image and coords Args: trainsize (list): [w, h], the standard size used to train use_udp (bool): whether to use Unbiased Data Processing. records(dict): the dict contained the image and coords Returns: records (dict): contain the image and coords after tranformed """ def __init__(self, trainsize, use_udp=False): self.trainsize = trainsize self.use_udp = use_udp def __call__(self, image, im_info): rot = 0 imshape = im_info['im_shape'][::-1] center = im_info['center'] if 'center' in im_info else imshape / 2. scale = im_info['scale'] if 'scale' in im_info else imshape if self.use_udp: trans = get_warp_matrix( rot, center * 2.0, [self.trainsize[0] - 1.0, self.trainsize[1] - 1.0], scale) image = cv2.warpAffine( image, trans, (int(self.trainsize[0]), int(self.trainsize[1])), flags=cv2.INTER_LINEAR) else: trans = get_affine_transform(center, scale, rot, self.trainsize) image = cv2.warpAffine( image, trans, (int(self.trainsize[0]), int(self.trainsize[1])), flags=cv2.INTER_LINEAR) return image, im_info def expand_crop(images, rect, expand_ratio=0.3): imgh, imgw, c = images.shape label, conf, xmin, ymin, xmax, ymax = [int(x) for x in rect.tolist()] if label != 0: return None, None, None org_rect = [xmin, ymin, xmax, ymax] h_half = (ymax - ymin) * (1 + expand_ratio) / 2. w_half = (xmax - xmin) * (1 + expand_ratio) / 2. if h_half > w_half * 4 / 3: w_half = h_half * 0.75 center = [(ymin + ymax) / 2., (xmin + xmax) / 2.] ymin = max(0, int(center[0] - h_half)) ymax = min(imgh - 1, int(center[0] + h_half)) xmin = max(0, int(center[1] - w_half)) xmax = min(imgw - 1, int(center[1] + w_half)) return images[ymin:ymax, xmin:xmax, :], [xmin, ymin, xmax, ymax], org_rect