# Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ["TanhActivation", "SigmoidActivation", "SoftmaxActivation", "IdentityActivation", "LinearActivation", 'SequenceSoftmaxActivation', 'ExpActivation', "ReluActivation", "BReluActivation", "SoftReluActivation", "STanhActivation", "AbsActivation", "SquareActivation", "BaseActivation"] class BaseActivation(object): """ A mark for activation class. Each activation inherit BaseActivation, which has two parameters. :param name: activation name in paddle config. :type name: basestring :param support_hppl: True if supported by hppl. HPPL is a library used by paddle internally. Currently, lstm layer can only use activations supported by hppl. :type support_hppl: bool """ def __init__(self, name, support_hppl): self.name = name self.support_hppl = support_hppl def __repr__(self): return self.name class TanhActivation(BaseActivation): """ Tanh activation. .. math:: f(z)=tanh(z)=\\frac{e^z-e^{-z}}{e^z+e^{-z}} """ def __init__(self): BaseActivation.__init__(self, 'tanh', True) class SigmoidActivation(BaseActivation): """ Sigmoid activation. .. math:: f(z) = \\frac{1}{1+exp(-z)} """ def __init__(self): BaseActivation.__init__(self, 'sigmoid', True) class SoftmaxActivation(BaseActivation): """ Softmax activation for simple input .. math:: P(y=j|x) = \\frac{e^{x_j}} {\\sum^K_{k=1} e^{x_j} } """ def __init__(self): BaseActivation.__init__(self, 'softmax', False) class SequenceSoftmaxActivation(BaseActivation): """ Softmax activation for one sequence. The dimension of input feature must be 1 and a sequence. .. code:: python result = softmax(for each_feature_vector[0] in input_feature) for i, each_time_step_output in enumerate(output): each_time_step_output = result[i] """ def __init__(self): BaseActivation.__init__(self, 'sequence_softmax', False) class IdentityActivation(BaseActivation): """ Identity Activation. Just do nothing for output both forward/backward. """ def __init__(self): BaseActivation.__init__(self, 'linear', False) LinearActivation = IdentityActivation class ReluActivation(BaseActivation): """ Relu activation. forward. :math:`y = max(0, z)` derivative: .. math:: 1 &\\quad if z > 0 \\\\ 0 &\\quad\\mathrm{otherwize} """ def __init__(self): BaseActivation.__init__(self, 'relu', True) class BReluActivation(BaseActivation): """ BRelu Activation. forward. :math:`y = min(24, max(0, z))` derivative: .. math:: 1 &\\quad if 0 < z < 24 \\\\ 0 &\\quad \\mathrm{otherwise} """ def __init__(self): BaseActivation.__init__(self, 'brelu', False) class SoftReluActivation(BaseActivation): """ SoftRelu Activation. """ def __init__(self): BaseActivation.__init__(self, 'softrelu', False) class STanhActivation(BaseActivation): """ Scaled Tanh Activation. .. math:: f(z) = 1.7159 * tanh(2/3*z) """ def __init__(self): BaseActivation.__init__(self, 'stanh', False) class AbsActivation(BaseActivation): """ Abs Activation. Forward: :math:`f(z) = abs(z)` Derivative: .. math:: 1 &\\quad if \\quad z > 0 \\\\ -1 &\\quad if \\quad z < 0 \\\\ 0 &\\quad if \\quad z = 0 """ def __init__(self): BaseActivation.__init__(self, 'abs', False) class SquareActivation(BaseActivation): """ Square Activation. .. math:: f(z) = z^2. """ def __init__(self): BaseActivation.__init__(self, 'square', False) class ExpActivation(BaseActivation): """ Exponential Activation. .. math:: f(z) = e^z. """ def __init__(self): BaseActivation.__init__(self, 'exponential', False) class LogActivation(BaseActivation): """ Logarithm Activation. .. math:: f(z) = log(z) """ def __init__(self): BaseActivation.__init__(self, 'log', False)