# Region-based Heterogeneous Memory Management ## Design ### Usage To allocate 4KB CPU memory: ```cpp p = memory::Alloc(platform::CPUPlace(), 4*1024); ``` To allocate 4KB memory on the 3rd GPU: ```cpp p = memory::Alloc(platform::GPUPlace(2), 4*1024); ``` To free memory and check the so-far used amount of memory on a place: ```cpp auto pl = platform::GPUPlace(0); p = memory::Alloc(pl, 4*1024); cout << memory::Used(pl); memory::Free(pl, p); ``` ### API In `paddle/memory/memory.h` we have: ```cpp namespace memory { template void* Alloc(Place, size_t); template void Free(Place, void*); template size_t Used(Place); } // namespace memory ``` These function templates have specializations on either `platform::CPUPlace` or `platform::GPUPlace`: ```cpp template<> void* Alloc(CPUPlace p, size_t size) { return GetCPUBuddyAllocator()->Alloc(size); } ``` and ```cpp template<> void Alloc(GPUPlace p, size_t size) { return GetGPUBuddyAllocator(p.id)->Alloc(size); } ``` Similar specializations exist for `Free` and `Used`. ### Implementation `GetCPUBuddyAllocator` and `GetGPUBuddyAllocator` are singletions. ```cpp BuddyAllocator* GetCPUBuddyAllocator() { static BuddyAllocator* a = NULL; if (a == NULL) { a = new BuddyAllocator(new CPUAllocator /*backup allocator*/, ...); } return a; } BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) { static BuddyAllocator* as = NULL; if (as == NULL) { as = new BuddyAllocator*[platform::NumGPUs()]; for (int gpu = 0; gpu < platform::NumGPUs(); gpu++) { as[gpu] = new BuddyAllocator(new GPUAllocator(gpu) /* backup allocator */, ...); } } return as[gpu_id); ``` #### `BuddyAllocator` `BuddyAllocator` implements the buddy allocation algorithm. Its constructor takes parameters only related with the algorithm: ```cpp BuddyAllocator::BuddyAllocator(initial_pool_size, max_pool_size) { ... } ``` Please be aware that **`BuddyAllocator` always allocate aligned memory**, aligned on 32-bytes, which can hold a `BuddyAllocator::Block` object: ```cpp class BuddyAllocator { private: struct Block { size_t size; Block* left, right; size_t index; // allocator id }; ... }; ``` Because BuddyAllocator has the meta-data of each block, it can trace the used memory -- record the amount returned by `Alloc` freed in `Free`. Instead, `CPUAllocator` and `GPUAllocator` doesn't know the size of freed memory block and cannot do the trace. #### System Allocators The `GPUAllocator` and `CPUAllocator` are calls *system allocators*. They work as the fallback allocators of `BuddyAllocator`. ## Justification I got inspiration from Majel and Caffe2, though above design look different from both. ### Caffe2 In Caffe2, `Tensor::mutable_data()` allocates the memroy. In particular, [`Tensor::mutable_data`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/tensor.h#L523) calls [`Tensor::raw_mutable_data`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/tensor.h#L459), which in turn calls [`Context::New`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/tensor.h#L479). There are two implementations of `Context`: 1. [`CPUContext`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context.h#L105), whose [`New` method](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context.h#L131) calls [`g_cpu_allocator.get()->New(size_t)`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context.cc#L15) to allocate the memory. 1. [`CUDAContext`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context_gpu.h#L99), which has a data member [`int gpu_id_`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context_gpu.h#L202). This looks very similar to class `majel::GPUPlace`, who also has an `int id_` data member. `CUDAContext::New(size_t)` calls [`g_cub_allocator->DeviceAllocate(&ptr, nbytes)`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context_gpu.cu#L355) to allocate the memory. ### Majel In Majel, there are basically two allocator types: 1. `cpu::SystemAllocator`, which has similar functionality to `caffe2::CPUContext::New/Delete`. 1. `gpu::SystemAllocator`, which has similar functionality to `caffe2::CUDAContext::New/Delete`. However, memory allocation is not via these two allocators. Instead, these two allocators are defined in hidden namespaces. In Majel there are hidden global variables like: 1. `cpu::SystemAllocator g_cpu_allocator`, and 1. `vector g_gpu_allocators(NUM_GPUS)`. Programs allocate memory via a BuddyAllocator, which can take the `g_cpu_allocator` or a `g_gpu_allocators[gpu_id]` as its *fallback allocator*, so that if BuddyAllocator cannot find a block in its memory pool, it extends its memory pool by calling the fallback allocator's `New(size_t)`.