architecture: YOLOv3 use_gpu: true max_iters: 3600 log_smooth_window: 20 save_dir: output snapshot_iter: 200 metric: VOC map_type: integral pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar weights: output/yolov3_mobilenet_v1_roadsign/best_model num_classes: 4 finetune_exclude_pretrained_params: ['yolo_output'] use_fine_grained_loss: false YOLOv3: backbone: MobileNet yolo_head: YOLOv3Head MobileNet: norm_decay: 0. conv_group_scale: 1 with_extra_blocks: false YOLOv3Head: anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]] yolo_loss: YOLOv3Loss nms: background_label: -1 keep_top_k: 100 nms_threshold: 0.45 nms_top_k: 1000 normalized: false score_threshold: 0.01 YOLOv3Loss: ignore_thresh: 0.7 label_smooth: true LearningRate: base_lr: 0.0001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: - 2400 - 3300 - !LinearWarmup start_factor: 0.3333333333333333 steps: 100 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2 # _READER_: 'yolov3_reader.yml' TrainReader: inputs_def: fields: ['image', 'gt_bbox', 'gt_class', 'gt_score'] num_max_boxes: 50 dataset: !VOCDataSet dataset_dir: dataset/roadsign_voc anno_path: train.txt with_background: false use_default_label: false sample_transforms: - !DecodeImage to_rgb: True with_mixup: True - !MixupImage alpha: 1.5 beta: 1.5 - !ColorDistort {} - !RandomExpand fill_value: [123.675, 116.28, 103.53] ratio: 1.5 - !RandomCrop {} - !RandomFlipImage is_normalized: false - !NormalizeBox {} - !PadBox num_max_boxes: 50 - !BboxXYXY2XYWH {} batch_transforms: - !RandomShape sizes: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608] random_inter: True - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: True is_channel_first: false - !Permute to_bgr: false channel_first: True # Gt2YoloTarget is only used when use_fine_grained_loss set as true, # this operator will be deleted automatically if use_fine_grained_loss # is set as false - !Gt2YoloTarget anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]] downsample_ratios: [32, 16, 8] batch_size: 8 shuffle: true mixup_epoch: 250 drop_last: true worker_num: 4 bufsize: 2 use_process: true EvalReader: inputs_def: fields: ['image', 'im_size', 'im_id', 'gt_bbox', 'gt_class', 'is_difficult'] num_max_boxes: 50 dataset: !VOCDataSet dataset_dir: dataset/roadsign_voc anno_path: valid.txt with_background: false use_default_label: false sample_transforms: - !DecodeImage to_rgb: True - !ResizeImage target_size: 608 interp: 2 - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: True is_channel_first: false - !PadBox num_max_boxes: 50 - !Permute to_bgr: false channel_first: True batch_size: 8 drop_empty: false worker_num: 4 bufsize: 2 TestReader: inputs_def: image_shape: [3, 608, 608] fields: ['image', 'im_size', 'im_id'] dataset: !ImageFolder anno_path: dataset/roadsign_voc/label_list.txt with_background: false use_default_label: false sample_transforms: - !DecodeImage to_rgb: True - !ResizeImage target_size: 608 interp: 2 - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: True is_channel_first: false - !Permute to_bgr: false channel_first: True batch_size: 1