# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from paddle.nn.initializer import Constant, Uniform, Normal, XavierUniform from paddle import ParamAttr from ppdet.core.workspace import register, serializable from paddle.regularizer import L2Decay from ppdet.modeling.layers import DeformableConvV2, ConvNormLayer, LiteConv import math from ppdet.modeling.ops import batch_norm from ..shape_spec import ShapeSpec __all__ = ['TTFFPN'] class Upsample(nn.Layer): def __init__(self, ch_in, ch_out, norm_type='bn', name=None): super(Upsample, self).__init__() fan_in = ch_in * 3 * 3 stdv = 1. / math.sqrt(fan_in) self.dcn = DeformableConvV2( ch_in, ch_out, kernel_size=3, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( initializer=Constant(0), regularizer=L2Decay(0.), learning_rate=2.), lr_scale=2., regularizer=L2Decay(0.)) self.bn = batch_norm( ch_out, norm_type=norm_type, initializer=Constant(1.), name=name) def forward(self, feat): dcn = self.dcn(feat) bn = self.bn(dcn) relu = F.relu(bn) out = F.interpolate(relu, scale_factor=2., mode='bilinear') return out class DeConv(nn.Layer): def __init__(self, ch_in, ch_out, norm_type='bn', name=None): super(DeConv, self).__init__() self.deconv = nn.Sequential() conv1 = ConvNormLayer( ch_in=ch_in, ch_out=ch_out, stride=1, filter_size=1, norm_type=norm_type, initializer=XavierUniform(), norm_name=name + '.conv1.norm', name=name + '.conv1') conv2 = nn.Conv2DTranspose( in_channels=ch_out, out_channels=ch_out, kernel_size=4, padding=1, stride=2, groups=ch_out, weight_attr=ParamAttr(initializer=XavierUniform()), bias_attr=False) bn = batch_norm( ch_out, norm_type=norm_type, norm_decay=0., name=name + '.bn') conv3 = ConvNormLayer( ch_in=ch_out, ch_out=ch_out, stride=1, filter_size=1, norm_type=norm_type, initializer=XavierUniform(), norm_name=name + '.conv3.norm', name=name + '.conv3') self.deconv.add_sublayer('conv1', conv1) self.deconv.add_sublayer('relu6_1', nn.ReLU6()) self.deconv.add_sublayer('conv2', conv2) self.deconv.add_sublayer('bn', bn) self.deconv.add_sublayer('relu6_2', nn.ReLU6()) self.deconv.add_sublayer('conv3', conv3) self.deconv.add_sublayer('relu6_3', nn.ReLU6()) def forward(self, inputs): return self.deconv(inputs) class LiteUpsample(nn.Layer): def __init__(self, ch_in, ch_out, norm_type='bn', name=None): super(LiteUpsample, self).__init__() self.deconv = DeConv( ch_in, ch_out, norm_type=norm_type, name=name + '.deconv') self.conv = LiteConv( ch_in, ch_out, norm_type=norm_type, name=name + '.liteconv') def forward(self, inputs): deconv_up = self.deconv(inputs) conv = self.conv(inputs) interp_up = F.interpolate(conv, scale_factor=2., mode='bilinear') return deconv_up + interp_up class ShortCut(nn.Layer): def __init__(self, layer_num, ch_in, ch_out, norm_type='bn', lite_neck=False, name=None): super(ShortCut, self).__init__() shortcut_conv = nn.Sequential() for i in range(layer_num): fan_out = 3 * 3 * ch_out std = math.sqrt(2. / fan_out) in_channels = ch_in if i == 0 else ch_out shortcut_name = name + '.conv.{}'.format(i) if lite_neck: shortcut_conv.add_sublayer( shortcut_name, LiteConv( in_channels=in_channels, out_channels=ch_out, with_act=i < layer_num - 1, norm_type=norm_type, name=shortcut_name)) else: shortcut_conv.add_sublayer( shortcut_name, nn.Conv2D( in_channels=in_channels, out_channels=ch_out, kernel_size=3, padding=1, weight_attr=ParamAttr(initializer=Normal(0, std)), bias_attr=ParamAttr( learning_rate=2., regularizer=L2Decay(0.)))) if i < layer_num - 1: shortcut_conv.add_sublayer(shortcut_name + '.act', nn.ReLU()) self.shortcut = self.add_sublayer('short', shortcut_conv) def forward(self, feat): out = self.shortcut(feat) return out @register @serializable class TTFFPN(nn.Layer): """ Args: in_channels (list): number of input feature channels from backbone. [128,256,512,1024] by default, means the channels of DarkNet53 backbone return_idx [1,2,3,4]. planes (list): the number of output feature channels of FPN. [256, 128, 64] by default shortcut_num (list): the number of convolution layers in each shortcut. [3,2,1] by default, means DarkNet53 backbone return_idx_1 has 3 convs in its shortcut, return_idx_2 has 2 convs and return_idx_3 has 1 conv. norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional. bn by default lite_neck (bool): whether to use lite conv in TTFNet FPN, False by default fusion_method (string): the method to fusion upsample and lateral layer. 'add' and 'concat' are optional, add by default """ __shared__ = ['norm_type'] def __init__(self, in_channels, planes=[256, 128, 64], shortcut_num=[3, 2, 1], norm_type='bn', lite_neck=False, fusion_method='add'): super(TTFFPN, self).__init__() self.planes = planes self.shortcut_num = shortcut_num[::-1] self.shortcut_len = len(shortcut_num) self.ch_in = in_channels[::-1] self.fusion_method = fusion_method self.upsample_list = [] self.shortcut_list = [] self.upper_list = [] for i, out_c in enumerate(self.planes): in_c = self.ch_in[i] if i == 0 else self.upper_list[-1] upsample_module = LiteUpsample if lite_neck else Upsample upsample = self.add_sublayer( 'upsample.' + str(i), upsample_module( in_c, out_c, norm_type=norm_type, name='deconv_layers.' + str(i))) self.upsample_list.append(upsample) if i < self.shortcut_len: shortcut = self.add_sublayer( 'shortcut.' + str(i), ShortCut( self.shortcut_num[i], self.ch_in[i + 1], out_c, norm_type=norm_type, lite_neck=lite_neck, name='shortcut.' + str(i))) self.shortcut_list.append(shortcut) if self.fusion_method == 'add': upper_c = out_c elif self.fusion_method == 'concat': upper_c = out_c * 2 else: raise ValueError('Illegal fusion method. Expected add or\ concat, but received {}'.format(self.fusion_method)) self.upper_list.append(upper_c) def forward(self, inputs): feat = inputs[-1] for i, out_c in enumerate(self.planes): feat = self.upsample_list[i](feat) if i < self.shortcut_len: shortcut = self.shortcut_list[i](inputs[-i - 2]) if self.fusion_method == 'add': feat = feat + shortcut else: feat = paddle.concat([feat, shortcut], axis=1) return feat @classmethod def from_config(cls, cfg, input_shape): return {'in_channels': [i.channels for i in input_shape], } @property def out_shape(self): return [ShapeSpec(channels=self.upper_list[-1], )]