# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ All layers just related to the detection neural network. """ from ..layer_helper import LayerHelper from ..param_attr import ParamAttr from ..framework import Variable import tensor import ops import nn import math __all__ = [ 'detection_output', 'prior_box', 'multi_box_head', ] def detection_output(scores, loc, prior_box, prior_box_var, background_label=0, nms_threshold=0.3, nms_top_k=400, keep_top_k=200, score_threshold=0.01, nms_eta=1.0): """ **Detection Output Layer** This layer applies the NMS to the output of network and computes the predict bounding box location. The output's shape of this layer could be zero if there is no valid bounding box. Args: scores(Variable): A 3-D Tensor with shape [N, C, M] represents the predicted confidence predictions. N is the batch size, C is the class number, M is number of bounding boxes. For each category there are total M scores which corresponding M bounding boxes. loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the predicted locations of M bounding bboxes. N is the batch size, and each bounding box has four coordinate values and the layout is [xmin, ymin, xmax, ymax]. prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes, each box is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the left top coordinate of the anchor box, if the input is image feature map, they are close to the origin of the coordinate system. [xmax, ymax] is the right bottom coordinate of the anchor box. prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group of variance. background_label(float): The index of background label, the background label will be ignored. If set to -1, then all categories will be considered. nms_threshold(float): The threshold to be used in NMS. nms_top_k(int): Maximum number of detections to be kept according to the confidences aftern the filtering detections based on score_threshold. keep_top_k(int): Number of total bboxes to be kept per image after NMS step. -1 means keeping all bboxes after NMS step. score_threshold(float): Threshold to filter out bounding boxes with low confidence score. If not provided, consider all boxes. nms_eta(float): The parameter for adaptive NMS. Returns: The detected bounding boxes which are a Tensor. Examples: .. code-block:: python pb = layers.data(name='prior_box', shape=[10, 4], append_batch_size=False, dtype='float32') pbv = layers.data(name='prior_box_var', shape=[10, 4], append_batch_size=False, dtype='float32') loc = layers.data(name='target_box', shape=[21, 4], append_batch_size=False, dtype='float32') scores = layers.data(name='scores', shape=[2, 21, 10], append_batch_size=False, dtype='float32') nmsed_outs = fluid.layers.detection_output(scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv) """ helper = LayerHelper("detection_output", **locals()) decoded_box = helper.create_tmp_variable(dtype=loc.dtype) helper.append_op( type="box_coder", inputs={ 'PriorBox': prior_box, 'PriorBoxVar': prior_box_var, 'TargetBox': loc }, outputs={'OutputBox': decoded_box}, attrs={'code_type': 'decode_center_size'}) nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype) helper.append_op( type="multiclass_nms", inputs={'Scores': scores, 'BBoxes': decoded_box}, outputs={'Out': nmsed_outs}, attrs={ 'background_label': 0, 'nms_threshold': nms_threshold, 'nms_top_k': nms_top_k, 'keep_top_k': keep_top_k, 'score_threshold': score_threshold, 'nms_eta': 1.0 }) return nmsed_outs def prior_box(inputs, image, min_ratio, max_ratio, aspect_ratios, base_size, steps=None, step_w=None, step_h=None, offset=0.5, variance=[0.1, 0.1, 0.1, 0.1], flip=False, clip=False, min_sizes=None, max_sizes=None, name=None): """ **Prior_boxes** Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm. The details of this algorithm, please refer the section 2.2 of SSD paper (SSD: Single Shot MultiBox Detector) `_ . Args: inputs(list|tuple): The list of input Variables, the format of all Variables is NCHW. image(Variable): The input image data of PriorBoxOp, the layout is NCHW. min_ratio(int): the min ratio of generated prior boxes. max_ratio(int): the max ratio of generated prior boxes. aspect_ratios(list|tuple): the aspect ratios of generated prior boxes. The length of input and aspect_ratios must be equal. base_size(int): the base_size is used to get min_size and max_size according to min_ratio and max_ratio. step_w(list|tuple|None): Prior boxes step across width. If step_w[i] == 0.0, the prior boxes step across width of the inputs[i] will be automatically calculated. step_h(list|tuple|None): Prior boxes step across height, If step_h[i] == 0.0, the prior boxes step across height of the inputs[i] will be automatically calculated. offset(float, optional, default=0.5): Prior boxes center offset. variance(list|tuple|[0.1, 0.1, 0.1, 0.1]): the variances to be encoded in prior boxes. flip(bool|False): Whether to flip aspect ratios. clip(bool, optional, default=False): Whether to clip out-of-boundary boxes. min_sizes(list|tuple|None): If `len(inputs) <=2`, min_sizes must be set up, and the length of min_sizes should equal to the length of inputs. max_sizes(list|tuple|None): If `len(inputs) <=2`, max_sizes must be set up, and the length of min_sizes should equal to the length of inputs. name(str|None): Name of the prior box layer. Returns: boxes(Variable): the output prior boxes of PriorBox. The layout is [num_priors, 4]. num_priors is the total box count of each position of inputs. Variances(Variable): the expanded variances of PriorBox. The layout is [num_priors, 4]. num_priors is the total box count of each position of inputs Examples: .. code-block:: python prior_box( inputs = [conv1, conv2, conv3, conv4, conv5, conv6], image = data, min_ratio = 20, # 0.20 max_ratio = 90, # 0.90 offset = 0.5, base_size = 300, variance = [0.1,0.1,0.1,0.1], aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]], flip=True, clip=True) """ def _prior_box_(input, image, min_sizes, max_sizes, aspect_ratios, variance, flip=False, clip=False, step_w=0.0, step_h=0.0, offset=0.5, name=None): helper = LayerHelper("prior_box", **locals()) dtype = helper.input_dtype() box = helper.create_tmp_variable(dtype) var = helper.create_tmp_variable(dtype) helper.append_op( type="prior_box", inputs={"Input": input, "Image": image}, outputs={"Boxes": box, "Variances": var}, attrs={ 'min_sizes': min_sizes, 'max_sizes': max_sizes, 'aspect_ratios': aspect_ratios, 'variances': variance, 'flip': flip, 'clip': clip, 'step_w': step_w, 'step_h': step_h, 'offset': offset }) return box, var def _reshape_with_axis_(input, axis=1): if not (axis > 0 and axis < len(input.shape)): raise ValueError("The axis should be smaller than " "the arity of input and bigger than 0.") new_shape = [ -1, reduce(lambda x, y: x * y, input.shape[axis:len(input.shape)]) ] out = ops.reshape(x=input, shape=new_shape) return out def _is_list_or_tuple_(data): return (isinstance(data, list) or isinstance(data, tuple)) def _is_list_or_tuple_and_equal(data, length, err_info): if not (_is_list_or_tuple_(data) and len(data) == length): raise ValueError(err_info) if not _is_list_or_tuple_(inputs): raise ValueError('inputs should be a list or tuple.') num_layer = len(inputs) if num_layer <= 2: assert min_sizes is not None and max_sizes is not None assert len(min_sizes) == num_layer and len(max_sizes) == num_layer else: min_sizes = [] max_sizes = [] step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2))) for ratio in xrange(min_ratio, max_ratio + 1, step): min_sizes.append(base_size * ratio / 100.) max_sizes.append(base_size * (ratio + step) / 100.) min_sizes = [base_size * .10] + min_sizes max_sizes = [base_size * .20] + max_sizes if aspect_ratios: _is_list_or_tuple_and_equal( aspect_ratios, num_layer, 'aspect_ratios should be list and the length of inputs ' 'and aspect_ratios should be the same.') if step_h: _is_list_or_tuple_and_equal( step_h, num_layer, 'step_h should be list and the length of inputs and ' 'step_h should be the same.') if step_w: _is_list_or_tuple_and_equal( step_w, num_layer, 'step_w should be list and the length of inputs and ' 'step_w should be the same.') if steps: _is_list_or_tuple_and_equal( steps, num_layer, 'steps should be list and the length of inputs and ' 'step_w should be the same.') step_w = steps step_h = steps box_results = [] var_results = [] for i, input in enumerate(inputs): min_size = min_sizes[i] max_size = max_sizes[i] aspect_ratio = [] if not _is_list_or_tuple_(min_size): min_size = [min_size] if not _is_list_or_tuple_(max_size): max_size = [max_size] if aspect_ratios: aspect_ratio = aspect_ratios[i] if not _is_list_or_tuple_(aspect_ratio): aspect_ratio = [aspect_ratio] box, var = _prior_box_(input, image, min_size, max_size, aspect_ratio, variance, flip, clip, step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0, offset) box_results.append(box) var_results.append(var) if len(box_results) == 1: box = box_results[0] var = var_results[0] else: reshaped_boxes = [] reshaped_vars = [] for i in range(len(box_results)): reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3)) reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3)) box = tensor.concat(reshaped_boxes) var = tensor.concat(reshaped_vars) return box, var def multi_box_head(inputs, num_classes, min_sizes=None, max_sizes=None, min_ratio=None, max_ratio=None, aspect_ratios=None, flip=False, share_location=True, kernel_size=1, pad=1, stride=1, use_batchnorm=False, base_size=None): """ **Multi Box Head** Generate prior boxes' location and confidence for SSD(Single Shot MultiBox Detector)algorithm. The details of this algorithm, please refer the section 2.1 of SSD paper (SSD: Single Shot MultiBox Detector)`_ . Args: inputs(list|tuple): The list of input Variables, the format of all Variables is NCHW. num_classes(int): The number of classes. min_sizes(list|tuple|None): The number of min_sizes is used to compute the number of predicted box. If the min_size is None, it will be computed according to min_ratio and max_ratio. max_sizes(list|tuple|None): The number of max_sizes is used to compute the the number of predicted box. min_ratio(int|None): If the min_sizes is None, min_ratio and max_ratio will be used to compute the min_sizes and max_sizes. max_ratio(int|None): If the min_sizes is None, max_ratio and min_ratio will be used to compute the min_sizes and max_sizes. aspect_ratios(list|tuple): The number of the aspect ratios is used to compute the number of prior box. base_size(int): the base_size is used to get min_size and max_size according to min_ratio and max_ratio. flip(bool|False): Whether to flip aspect ratios. name(str|None): Name of the prior box layer. Returns: mbox_loc(list): The predicted boxes' location of the inputs. The layout of each element is [N, H, W, Priors]. Priors is the number of predicted boxof each position of each input. mbox_conf(list): The predicted boxes' confidence of the inputs. The layout of each element is [N, H, W, Priors]. Priors is the number of predicted box of each position of each input. Examples: .. code-block:: python mbox_locs, mbox_confs = detection.multi_box_head( inputs=[conv1, conv2, conv3, conv4, conv5, conv5], num_classes=21, min_ratio=20, max_ratio=90, aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]], base_size=300, flip=True) """ def _is_equal_(len1, len2, err_info): if not (len1 == len2): raise ValueError(err_info) def _is_list_or_tuple_(data): return (isinstance(data, list) or isinstance(data, tuple)) if not _is_list_or_tuple_(inputs): raise ValueError('inputs should be a list or tuple.') if min_sizes is not None: _is_equal_( len(inputs), len(min_sizes), 'the length of min_sizes ' 'and inputs should be equal.') if max_sizes is not None: _is_equal_( len(inputs), len(max_sizes), 'the length of max_sizes ' 'and inputs should be equal.') if aspect_ratios is not None: _is_equal_( len(inputs), len(aspect_ratios), 'the length of aspect_ratios ' 'and inputs should be equal.') if min_sizes is None: # If min_sizes is None, min_sizes and max_sizes # will be set according to max_ratio and min_ratio. num_layer = len(inputs) assert max_ratio is not None and min_ratio is not None,\ 'max_ratio and min_ratio must be not None.' assert num_layer >= 3, 'The length of the input data is at least three.' min_sizes = [] max_sizes = [] step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2))) for ratio in xrange(min_ratio, max_ratio + 1, step): min_sizes.append(base_size * ratio / 100.) max_sizes.append(base_size * (ratio + step) / 100.) min_sizes = [base_size * .10] + min_sizes max_sizes = [base_size * .20] + max_sizes mbox_locs = [] mbox_confs = [] for i, input in enumerate(inputs): min_size = min_sizes[i] if not _is_list_or_tuple_(min_size): min_size = [min_size] max_size = [] if max_sizes is not None: max_size = max_sizes[i] if not _is_list_or_tuple_(max_size): max_size = [max_size] _is_equal_( len(max_size), len(min_size), 'the length of max_size and min_size should be equal.') aspect_ratio = [] if aspect_ratios is not None: aspect_ratio = aspect_ratios[i] if not _is_list_or_tuple_(aspect_ratio): aspect_ratio = [aspect_ratio] # get the number of prior box on each location num_priors_per_location = 0 if max_sizes is not None: num_priors_per_location = len(min_size) + \ len(aspect_ratio) * len(min_size) +\ len(max_size) else: num_priors_per_location = len(min_size) +\ len(aspect_ratio) * len(min_size) if flip: num_priors_per_location += len(aspect_ratio) * len(min_size) # get mbox_loc num_loc_output = num_priors_per_location * 4 if share_location: num_loc_output *= num_classes mbox_loc = nn.conv2d( input=input, num_filters=num_loc_output, filter_size=kernel_size, padding=pad, stride=stride) mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1]) mbox_locs.append(mbox_loc) # get conf_loc num_conf_output = num_priors_per_location * num_classes conf_loc = nn.conv2d( input=input, num_filters=num_conf_output, filter_size=kernel_size, padding=pad, stride=stride) conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1]) mbox_confs.append(conf_loc) return mbox_locs, mbox_confs