# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from paddleslim.nas.search_space.search_space_base import SearchSpaceBase from paddleslim.nas.search_space.search_space_registry import SEARCHSPACE from ppdet.modeling.backbones.blazenet import BlazeNet from ppdet.modeling.architectures.blazeface import BlazeFace @SEARCHSPACE.register class BlazeFaceNasSpace(SearchSpaceBase): def __init__(self, input_size, output_size, block_num, block_mask): super(BlazeFaceNasSpace, self).__init__(input_size, output_size, block_num, block_mask) self.blaze_filter_num1 = np.array([4, 8, 12, 16, 20, 24, 32]) self.blaze_filter_num2 = np.array([8, 12, 16, 20, 24, 32, 40, 48, 64]) self.mid_filter_num = np.array([8, 12, 16, 20, 24, 32]) self.double_filter_num = np.array( [8, 12, 16, 24, 32, 40, 48, 64, 72, 80, 88, 96]) self.use_5x5kernel = np.array([0, 1]) def init_tokens(self): return [2, 1, 3, 8, 2, 1, 2, 1, 1] def range_table(self): return [ len(self.blaze_filter_num1), len(self.blaze_filter_num2), len(self.double_filter_num), len(self.double_filter_num), len(self.mid_filter_num), len(self.mid_filter_num), len(self.mid_filter_num), len(self.mid_filter_num), len(self.use_5x5kernel) ] def get_nas_cnf(self, tokens=None): if tokens is None: tokens = self.init_tokens() blaze_filters = [[ self.blaze_filter_num1[tokens[0]], self.blaze_filter_num1[tokens[0]] ], [ self.blaze_filter_num1[tokens[0]], self.blaze_filter_num2[tokens[1]], 2 ], [ self.blaze_filter_num2[tokens[1]], self.blaze_filter_num2[tokens[1]] ]] double_blaze_filters = [[ self.blaze_filter_num2[tokens[1]], self.mid_filter_num[tokens[4]], self.double_filter_num[tokens[2]], 2 ], [ self.double_filter_num[tokens[2]], self.mid_filter_num[tokens[5]], self.double_filter_num[tokens[2]] ], [ self.double_filter_num[tokens[2]], self.mid_filter_num[tokens[6]], self.double_filter_num[tokens[3]], 2 ], [ self.double_filter_num[tokens[3]], self.mid_filter_num[tokens[7]], self.double_filter_num[tokens[3]] ]] is_5x5kernel = True if self.use_5x5kernel[tokens[8]] else False return blaze_filters, double_blaze_filters, is_5x5kernel def token2arch(self, tokens=None): blaze_filters, double_blaze_filters, is_5x5kernel = self.get_nas_cnf( tokens) self.print_nas_structure(tokens) def net_arch(input, mode, cfg): self.output_decoder = cfg.BlazeFace['output_decoder'] self.min_sizes = cfg.BlazeFace['min_sizes'] self.use_density_prior_box = cfg.BlazeFace['use_density_prior_box'] my_backbone = BlazeNet( blaze_filters=blaze_filters, double_blaze_filters=double_blaze_filters, use_5x5kernel=is_5x5kernel) my_blazeface = BlazeFace( my_backbone, output_decoder=self.output_decoder, min_sizes=self.min_sizes, use_density_prior_box=self.use_density_prior_box) return my_blazeface.build(input, mode=mode) return net_arch def print_nas_structure(self, tokens=None): blaze_filters, double_filters, is_5x5kernel = self.get_nas_cnf(tokens) print('---------->>> BlazeFace-NAS structure start: <<<------------') print('BlazeNet:') print(' blaze_filters: {}'.format(blaze_filters)) print(' double_blaze_filters: {}'.format(double_filters)) print(' use_5x5kernel: {}'.format(is_5x5kernel)) print(' with_extra_blocks: true') print(' lite_edition: false') print('---------->>> BlazeFace-NAS structure end! <<<------------')