# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid from paddle.fluid.layer_helper import LayerHelper import paddle.fluid.layers as layers from paddle.fluid.layers import (tensor, iou_similarity, bipartite_match, target_assign, box_coder) from ppdet.core.workspace import register, serializable __all__ = ['SSDWithLmkLoss'] @register @serializable class SSDWithLmkLoss(object): """ ssd_with_lmk_loss function. Args: background_label (int): The index of background label, 0 by default. overlap_threshold (float): If match_type is `per_prediction`, use `overlap_threshold` to determine the extra matching bboxes when finding matched boxes. 0.5 by default. neg_pos_ratio (float): The ratio of the negative boxes to the positive boxes, used only when mining_type is `max_negative`, 3.0 by default. neg_overlap (float): The negative overlap upper bound for the unmatched predictions. Use only when mining_type is `max_negative`, 0.5 by default. loc_loss_weight (float): Weight for localization loss, 1.0 by default. conf_loss_weight (float): Weight for confidence loss, 1.0 by default. match_type (str): The type of matching method during training, should be `bipartite` or `per_prediction`, `per_prediction` by default. normalize (bool): Whether to normalize the loss by the total number of output locations, True by default. """ def __init__(self, background_label=0, overlap_threshold=0.5, neg_pos_ratio=3.0, neg_overlap=0.5, loc_loss_weight=1.0, conf_loss_weight=1.0, match_type='per_prediction', normalize=True): super(SSDWithLmkLoss, self).__init__() self.background_label = background_label self.overlap_threshold = overlap_threshold self.neg_pos_ratio = neg_pos_ratio self.neg_overlap = neg_overlap self.loc_loss_weight = loc_loss_weight self.conf_loss_weight = conf_loss_weight self.match_type = match_type self.normalize = normalize def __call__(self, location, confidence, gt_box, gt_label, landmark_predict, lmk_label, lmk_ignore_flag, prior_box, prior_box_var=None): def _reshape_to_2d(var): return layers.flatten(x=var, axis=2) helper = LayerHelper('ssd_loss') #, **locals()) # Only support mining_type == 'max_negative' now. mining_type = 'max_negative' # The max `sample_size` of negative box, used only # when mining_type is `hard_example`. sample_size = None num, num_prior, num_class = confidence.shape conf_shape = layers.shape(confidence) # 1. Find matched boundding box by prior box. # 1.1 Compute IOU similarity between ground-truth boxes and prior boxes. iou = iou_similarity(x=gt_box, y=prior_box) # 1.2 Compute matched boundding box by bipartite matching algorithm. matched_indices, matched_dist = bipartite_match(iou, self.match_type, self.overlap_threshold) # 2. Compute confidence for mining hard examples # 2.1. Get the target label based on matched indices gt_label = layers.reshape( x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1)) gt_label.stop_gradient = True target_label, _ = target_assign( gt_label, matched_indices, mismatch_value=self.background_label) # 2.2. Compute confidence loss. # Reshape confidence to 2D tensor. confidence = _reshape_to_2d(confidence) target_label = tensor.cast(x=target_label, dtype='int64') target_label = _reshape_to_2d(target_label) target_label.stop_gradient = True conf_loss = layers.softmax_with_cross_entropy(confidence, target_label) # 3. Mining hard examples actual_shape = layers.slice(conf_shape, axes=[0], starts=[0], ends=[2]) actual_shape.stop_gradient = True conf_loss = layers.reshape( x=conf_loss, shape=(-1, 0), actual_shape=actual_shape) conf_loss.stop_gradient = True neg_indices = helper.create_variable_for_type_inference(dtype='int32') updated_matched_indices = helper.create_variable_for_type_inference( dtype=matched_indices.dtype) helper.append_op( type='mine_hard_examples', inputs={ 'ClsLoss': conf_loss, 'LocLoss': None, 'MatchIndices': matched_indices, 'MatchDist': matched_dist, }, outputs={ 'NegIndices': neg_indices, 'UpdatedMatchIndices': updated_matched_indices }, attrs={ 'neg_pos_ratio': self.neg_pos_ratio, 'neg_dist_threshold': self.neg_overlap, 'mining_type': mining_type, 'sample_size': sample_size, }) # 4. Assign classification and regression targets # 4.1. Encoded bbox according to the prior boxes. encoded_bbox = box_coder( prior_box=prior_box, prior_box_var=prior_box_var, target_box=gt_box, code_type='encode_center_size') # 4.2. Assign regression targets target_bbox, target_loc_weight = target_assign( encoded_bbox, updated_matched_indices, mismatch_value=self.background_label) # 4.3. Assign classification targets target_label, target_conf_weight = target_assign( gt_label, updated_matched_indices, negative_indices=neg_indices, mismatch_value=self.background_label) target_loc_weight = target_loc_weight * target_label encoded_lmk_label = self.decode_lmk(lmk_label, prior_box, prior_box_var) target_lmk, target_lmk_weight = target_assign( encoded_lmk_label, updated_matched_indices, mismatch_value=self.background_label) lmk_ignore_flag = layers.reshape( x=lmk_ignore_flag, shape=(len(lmk_ignore_flag.shape) - 1) * (0, ) + (-1, 1)) target_ignore, nouse = target_assign( lmk_ignore_flag, updated_matched_indices, mismatch_value=self.background_label) target_lmk_weight = target_lmk_weight * target_ignore landmark_predict = _reshape_to_2d(landmark_predict) target_lmk = _reshape_to_2d(target_lmk) target_lmk_weight = _reshape_to_2d(target_lmk_weight) lmk_loss = layers.smooth_l1(landmark_predict, target_lmk) lmk_loss = lmk_loss * target_lmk_weight target_lmk.stop_gradient = True target_lmk_weight.stop_gradient = True target_ignore.stop_gradient = True nouse.stop_gradient = True # 5. Compute loss. # 5.1 Compute confidence loss. target_label = _reshape_to_2d(target_label) target_label = tensor.cast(x=target_label, dtype='int64') conf_loss = layers.softmax_with_cross_entropy(confidence, target_label) target_conf_weight = _reshape_to_2d(target_conf_weight) conf_loss = conf_loss * target_conf_weight # the target_label and target_conf_weight do not have gradient. target_label.stop_gradient = True target_conf_weight.stop_gradient = True # 5.2 Compute regression loss. location = _reshape_to_2d(location) target_bbox = _reshape_to_2d(target_bbox) loc_loss = layers.smooth_l1(location, target_bbox) target_loc_weight = _reshape_to_2d(target_loc_weight) loc_loss = loc_loss * target_loc_weight # the target_bbox and target_loc_weight do not have gradient. target_bbox.stop_gradient = True target_loc_weight.stop_gradient = True # 5.3 Compute overall weighted loss. loss = self.conf_loss_weight * conf_loss + self.loc_loss_weight * loc_loss + 0.4 * lmk_loss # reshape to [N, Np], N is the batch size and Np is the prior box number. loss = layers.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape) loss = layers.reduce_sum(loss, dim=1, keep_dim=True) if self.normalize: normalizer = layers.reduce_sum(target_loc_weight) + 1 loss = loss / normalizer return loss def decode_lmk(self, lmk_label, prior_box, prior_box_var): label0, label1, label2, label3, label4 = fluid.layers.split( lmk_label, num_or_sections=5, dim=1) lmk_labels_list = [label0, label1, label2, label3, label4] encoded_lmk_list = [] for label in lmk_labels_list: concat_label = fluid.layers.concat([label, label], axis=1) encoded_label = box_coder( prior_box=prior_box, prior_box_var=prior_box_var, target_box=concat_label, code_type='encode_center_size') encoded_lmk_label, _ = fluid.layers.split( encoded_label, num_or_sections=2, dim=2) encoded_lmk_list.append(encoded_lmk_label) encoded_lmk_concat = fluid.layers.concat( [ encoded_lmk_list[0], encoded_lmk_list[1], encoded_lmk_list[2], encoded_lmk_list[3], encoded_lmk_list[4] ], axis=2) return encoded_lmk_concat