# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import math import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn.initializer import KaimingUniform, Uniform from ppdet.core.workspace import register from ppdet.modeling.heads.centernet_head import ConvLayer __all__ = ['FairMOTEmbeddingHead'] @register class FairMOTEmbeddingHead(nn.Layer): """ Args: in_channels (int): the channel number of input to FairMOTEmbeddingHead. ch_head (int): the channel of features before fed into embedding, 256 by default. ch_emb (int): the channel of the embedding feature, 128 by default. num_identifiers (int): the number of identifiers, 14455 by default. """ def __init__(self, in_channels, ch_head=256, ch_emb=128, num_identifiers=14455): super(FairMOTEmbeddingHead, self).__init__() self.reid = nn.Sequential( ConvLayer( in_channels, ch_head, kernel_size=3, padding=1, bias=True), nn.ReLU(), ConvLayer( ch_head, ch_emb, kernel_size=1, stride=1, padding=0, bias=True)) param_attr = paddle.ParamAttr(initializer=KaimingUniform()) bound = 1 / math.sqrt(ch_emb) bias_attr = paddle.ParamAttr(initializer=Uniform(-bound, bound)) self.classifier = nn.Linear( ch_emb, num_identifiers, weight_attr=param_attr, bias_attr=bias_attr) self.reid_loss = nn.CrossEntropyLoss(ignore_index=-1, reduction='sum') # When num_identifiers is 1, emb_scale is set as 1 self.emb_scale = math.sqrt(2) * math.log( num_identifiers - 1) if num_identifiers > 1 else 1 @classmethod def from_config(cls, cfg, input_shape): if isinstance(input_shape, (list, tuple)): input_shape = input_shape[0] return {'in_channels': input_shape.channels} def forward(self, feat, inputs): reid_feat = self.reid(feat) if self.training: loss = self.get_loss(reid_feat, inputs) return loss else: reid_feat = F.normalize(reid_feat) return reid_feat def get_loss(self, feat, inputs): index = inputs['index'] mask = inputs['index_mask'] target = inputs['reid'] target = paddle.masked_select(target, mask > 0) target = paddle.unsqueeze(target, 1) feat = paddle.transpose(feat, perm=[0, 2, 3, 1]) feat_n, feat_h, feat_w, feat_c = feat.shape feat = paddle.reshape(feat, shape=[feat_n, -1, feat_c]) index = paddle.unsqueeze(index, 2) batch_inds = list() for i in range(feat_n): batch_ind = paddle.full( shape=[1, index.shape[1], 1], fill_value=i, dtype='int64') batch_inds.append(batch_ind) batch_inds = paddle.concat(batch_inds, axis=0) index = paddle.concat(x=[batch_inds, index], axis=2) feat = paddle.gather_nd(feat, index=index) mask = paddle.unsqueeze(mask, axis=2) mask = paddle.expand_as(mask, feat) mask.stop_gradient = True feat = paddle.masked_select(feat, mask > 0) feat = paddle.reshape(feat, shape=[-1, feat_c]) feat = F.normalize(feat) feat = self.emb_scale * feat logit = self.classifier(feat) target.stop_gradient = True loss = self.reid_loss(logit, target) valid = (target != self.reid_loss.ignore_index) valid.stop_gradient = True count = paddle.sum((paddle.cast(valid, dtype=np.int32))) count.stop_gradient = True if count > 0: loss = loss / count return loss