English | [简体中文](attribute.md) # Attribute Recognition Modules of PP-Human Pedestrian attribute recognition has been widely used in the intelligent community, industrial, and transportation monitoring. Many attribute recognition modules have been gathered in PP-Human, including gender, age, hats, eyes, clothing and up to 26 attributes in total. Also, the pre-trained models are offered here and users can download and use them directly. | Task | Algorithm | Precision | Inference Speed(ms) | Download Link | |:---------------------|:---------:|:------:|:------:| :---------------------------------------------------------------------------------: | | High-Precision Model | PP-HGNet_small | mA: 95.4 | per person 1.54ms | [Download](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPLCNet_x1_0_person_attribute_945_infer.tar) | | Fast Model | PP-LCNet_x1_0 | mA: 94.5 | per person 0.54ms | [Download](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPLCNet_x1_0_person_attribute_945_infer.tar) | | Balanced Model | PP-HGNet_tiny | mA: 95.2 | per person 1.14ms | [Download](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_tiny_person_attribute_952_infer.tar) | 1. The precision of pedestiran attribute analysis is obtained by training and testing on the dataset consist of [PA100k](https://github.com/xh-liu/HydraPlus-Net#pa-100k-dataset),[RAPv2](http://www.rapdataset.com/rapv2.html),[PETA](http://mmlab.ie.cuhk.edu.hk/projects/PETA.html) and some business data. 2. The inference speed is V100, the speed of using TensorRT FP16. ## Instruction 1. Download the model from the link in the above table, and unzip it to```./output_inference```, and set the "enable: True" in ATTR of infer_cfg_pphuman.yml 2. When inputting the image, run the command as follows: ```python python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg_pphuman.yml \ --image_file=test_image.jpg \ --device=gpu \ ``` 3. When inputting the video, run the command as follows: ```python python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg_pphuman.yml \ --video_file=test_video.mp4 \ --device=gpu \ ``` 4. If you want to change the model path, there are two methods: - In ```./deploy/pphuman/config/infer_cfg_pphuman.yml``` you can configurate different model paths. In attribute recognition models, you can modify the configuration in the field of ATTR. - Add `--model_dir` in the command line to change the model path: ```python python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg_pphuman.yml \ --video_file=test_video.mp4 \ --device=gpu \ --model_dir det=ppyoloe/ ``` The test result is: