/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "Function.h" #include "paddle/math/Vector.h" #include "paddle/math/tests/TensorCheck.h" namespace paddle { class FunctionCompare { public: FunctionCompare(const std::string& name, const FuncConfig& config) : cpu(FunctionBase::funcRegistrar_.createByType(name + "-CPU")), gpu(FunctionBase::funcRegistrar_.createByType(name + "-GPU")) { cpu->init(config); gpu->init(config); } void cmpWithArg(const Arguments& inputs, const Arguments& outputs, const Arguments& inouts) { // init cpu and gpu arguments auto initArgs = [=]( Arguments& cpuArgs, Arguments& gpuArgs, const Arguments& inArgs) { for (const auto arg : inArgs) { size_t size = sizeof(real); for (const auto dim : arg.dims_) { size *= dim; } if (arg.getData()) { // todo(tianbing), waste unnecessary mem here cpuMemory.emplace_back(std::make_shared(size)); gpuMemory.emplace_back(std::make_shared(size)); cpuArgs.emplace_back(Tensor((real*)arg.getData(), arg.dims_)); gpuArgs.emplace_back(Tensor((real*)arg.getData(), arg.dims_)); // already init outside } else { cpuMemory.emplace_back(std::make_shared(size)); gpuMemory.emplace_back(std::make_shared(size)); cpuArgs.emplace_back( Tensor((real*)cpuMemory.back()->getBuf(), arg.dims_)); gpuArgs.emplace_back( Tensor((real*)gpuMemory.back()->getBuf(), arg.dims_)); // will use an api to refactor this code. CpuVector cpuVector(size / sizeof(real), (real*)cpuArgs.back().getData()); GpuVector gpuVector(size / sizeof(real), (real*)gpuArgs.back().getData()); cpuVector.uniform(0.001, 1); gpuVector.copyFrom(cpuVector); } } }; initArgs(cpuInputs, gpuInputs, inputs); initArgs(cpuOutputs, gpuOutputs, outputs); initArgs(cpuInouts, gpuInouts, inouts); // function calculate cpu->calc(cpuInputs, cpuOutputs, cpuInouts); gpu->calc(gpuInputs, gpuOutputs, gpuInouts); // check outputs and inouts auto checkArgs = [=](const Arguments& cpuArgs, const Arguments& gpuArgs) { for (size_t i = 0; i < cpuArgs.size(); i++) { auto cpu = cpuArgs[i]; auto gpu = gpuArgs[i]; size_t size = 1; for (auto dim : cpu.dims_) { size *= dim; } CpuVector cpuVector(size, (real*)cpu.getData()); GpuVector gpuVector(size, (real*)gpu.getData()); autotest::TensorCheckErr(cpuVector, gpuVector); } }; checkArgs(cpuOutputs, gpuOutputs); checkArgs(cpuInouts, gpuInouts); } std::shared_ptr getCpuFunction() const { return cpu; } std::shared_ptr getGpuFunction() const { return gpu; } protected: std::shared_ptr cpu; std::shared_ptr gpu; std::vector cpuMemory; std::vector gpuMemory; Arguments cpuInputs; Arguments cpuOutputs; Arguments cpuInouts; Arguments gpuInputs; Arguments gpuOutputs; Arguments gpuInouts; }; } // namespace paddle