#!/bin/bash source test_tipc/utils_func.sh FILENAME=$1 # MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' # 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer'] MODE=$2 # parse params dataline=$(cat ${FILENAME}) IFS=$'\n' lines=(${dataline}) # The training params model_name=$(func_parser_value "${lines[1]}") echo "ppdet python_infer: ${model_name}" python=$(func_parser_value "${lines[2]}") gpu_list=$(func_parser_value "${lines[3]}") train_use_gpu_key=$(func_parser_key "${lines[4]}") train_use_gpu_value=$(func_parser_value "${lines[4]}") autocast_list=$(func_parser_value "${lines[5]}") autocast_key=$(func_parser_key "${lines[5]}") epoch_key=$(func_parser_key "${lines[6]}") epoch_num=$(func_parser_params "${lines[6]}") save_model_key=$(func_parser_key "${lines[7]}") train_batch_key=$(func_parser_key "${lines[8]}") train_batch_value=$(func_parser_params "${lines[8]}") pretrain_model_key=$(func_parser_key "${lines[9]}") pretrain_model_value=$(func_parser_value "${lines[9]}") train_model_name=$(func_parser_value "${lines[10]}") train_infer_img_dir=$(func_parser_value "${lines[11]}") train_param_key1=$(func_parser_key "${lines[12]}") train_param_value1=$(func_parser_value "${lines[12]}") trainer_list=$(func_parser_value "${lines[14]}") norm_key=$(func_parser_key "${lines[15]}") norm_trainer=$(func_parser_value "${lines[15]}") pact_key=$(func_parser_key "${lines[16]}") pact_trainer=$(func_parser_value "${lines[16]}") fpgm_key=$(func_parser_key "${lines[17]}") fpgm_trainer=$(func_parser_value "${lines[17]}") distill_key=$(func_parser_key "${lines[18]}") distill_trainer=$(func_parser_value "${lines[18]}") trainer_key1=$(func_parser_key "${lines[19]}") trainer_value1=$(func_parser_value "${lines[19]}") trainer_key2=$(func_parser_key "${lines[20]}") trainer_value2=$(func_parser_value "${lines[20]}") # eval params eval_py=$(func_parser_value "${lines[23]}") eval_key1=$(func_parser_key "${lines[24]}") eval_value1=$(func_parser_value "${lines[24]}") # export params save_export_key=$(func_parser_key "${lines[27]}") save_export_value=$(func_parser_value "${lines[27]}") export_weight_key=$(func_parser_key "${lines[28]}") export_weight_value=$(func_parser_value "${lines[28]}") norm_export=$(func_parser_value "${lines[29]}") pact_export=$(func_parser_value "${lines[30]}") fpgm_export=$(func_parser_value "${lines[31]}") distill_export=$(func_parser_value "${lines[32]}") export_key1=$(func_parser_key "${lines[33]}") export_value1=$(func_parser_value "${lines[33]}") export_onnx_key=$(func_parser_key "${lines[34]}") export_value2=$(func_parser_value "${lines[34]}") kl_quant_export=$(func_parser_value "${lines[35]}") # parser inference model infer_mode_list=$(func_parser_value "${lines[37]}") infer_is_quant_list=$(func_parser_value "${lines[38]}") # parser inference inference_py=$(func_parser_value "${lines[39]}") use_gpu_key=$(func_parser_key "${lines[40]}") use_gpu_list=$(func_parser_value "${lines[40]}") use_mkldnn_key=$(func_parser_key "${lines[41]}") use_mkldnn_list=$(func_parser_value "${lines[41]}") cpu_threads_key=$(func_parser_key "${lines[42]}") cpu_threads_list=$(func_parser_value "${lines[42]}") batch_size_key=$(func_parser_key "${lines[43]}") batch_size_list=$(func_parser_value "${lines[43]}") use_trt_key=$(func_parser_key "${lines[44]}") use_trt_list=$(func_parser_value "${lines[44]}") precision_key=$(func_parser_key "${lines[45]}") precision_list=$(func_parser_value "${lines[45]}") infer_model_key=$(func_parser_key "${lines[46]}") image_dir_key=$(func_parser_key "${lines[47]}") infer_img_dir=$(func_parser_value "${lines[47]}") save_log_key=$(func_parser_key "${lines[48]}") benchmark_key=$(func_parser_key "${lines[49]}") benchmark_value=$(func_parser_value "${lines[49]}") infer_key1=$(func_parser_key "${lines[50]}") infer_value1=$(func_parser_value "${lines[50]}") LOG_PATH="./test_tipc/output/${model_name}/${MODE}" mkdir -p ${LOG_PATH} status_log="${LOG_PATH}/results_python.log" function func_inference(){ IFS='|' _python=$1 _script=$2 _model_dir=$3 _log_path=$4 _img_dir=$5 _flag_quant=$6 # inference for use_gpu in ${use_gpu_list[*]}; do if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then for use_mkldnn in ${use_mkldnn_list[*]}; do if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then continue fi for threads in ${cpu_threads_list[*]}; do for batch_size in ${batch_size_list[*]}; do _save_log_path="${_log_path}/python_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_mode_paddle_batchsize_${batch_size}.log" set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}") set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " eval $command last_status=${PIPESTATUS[0]} eval "cat ${_save_log_path}" status_check $last_status "${command}" "${status_log}" "${model_name}" done done done elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then for precision in ${precision_list[*]}; do if [[ ${precision} != "paddle" ]]; then if [[ ${_flag_quant} = "False" ]] && [[ ${precision} = "trt_int8" ]]; then continue fi if [[ ${_flag_quant} = "True" ]] && [[ ${precision} != "trt_int8" ]]; then continue fi fi for batch_size in ${batch_size_list[*]}; do _save_log_path="${_log_path}/python_infer_gpu_mode_${precision}_batchsize_${batch_size}.log" set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") set_precision=$(func_set_params "${precision_key}" "${precision}") set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " eval $command last_status=${PIPESTATUS[0]} eval "cat ${_save_log_path}" status_check $last_status "${command}" "${status_log}" "${model_name}" done done else echo "Does not support hardware other than CPU and GPU Currently!" fi done } if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then # set CUDA_VISIBLE_DEVICES GPUID=$3 if [ ${#GPUID} -le 0 ];then env=" " else env="export CUDA_VISIBLE_DEVICES=${GPUID}" fi eval $env Count=0 IFS="|" infer_quant_flag=(${infer_is_quant_list}) for infer_mode in ${infer_mode_list[*]}; do if [ ${infer_mode} = "null" ]; then continue fi if [ ${MODE} = "klquant_whole_infer" ] && [ ${infer_mode} != "kl_quant" ]; then continue fi if [ ${MODE} = "whole_infer" ] && [ ${infer_mode} = "kl_quant" ]; then continue fi # run export case ${infer_mode} in norm) run_export=${norm_export} ;; pact) run_export=${pact_export} ;; fpgm) run_export=${fpgm_export} ;; distill) run_export=${distill_export} ;; kl_quant) run_export=${kl_quant_export} ;; *) echo "Undefined infer_mode!"; exit 1; esac set_export_weight=$(func_set_params "${export_weight_key}" "${export_weight_value}") set_save_export_dir=$(func_set_params "${save_export_key}" "${save_export_value}") set_filename=$(func_set_params "filename" "${model_name}") export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} ${set_save_export_dir} " echo $export_cmd eval $export_cmd status_check $? "${export_cmd}" "${status_log}" "${model_name}" #run inference save_export_model_dir="${save_export_value}/${model_name}" is_quant=${infer_quant_flag[Count]} func_inference "${python}" "${inference_py}" "${save_export_model_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant} Count=$((${Count} + 1)) done else IFS="|" Count=0 for gpu in ${gpu_list[*]}; do use_gpu=${train_use_gpu_value} Count=$((${Count} + 1)) ips="" if [ ${gpu} = "-1" ];then env="" use_gpu=False elif [ ${#gpu} -le 1 ];then env="export CUDA_VISIBLE_DEVICES=${gpu}" eval ${env} elif [ ${#gpu} -le 15 ];then IFS="," array=(${gpu}) env="export CUDA_VISIBLE_DEVICES=${array[0]}" IFS="|" else IFS=";" array=(${gpu}) ips=${array[0]} gpu=${array[1]} IFS="|" env=" " fi for autocast in ${autocast_list[*]}; do for trainer in ${trainer_list[*]}; do flag_quant=False if [ ${trainer} = "${norm_key}" ]; then run_train=${norm_trainer} run_export=${norm_export} elif [ ${trainer} = "${pact_key}" ]; then run_train=${pact_trainer} run_export=${pact_export} flag_quant=True elif [ ${trainer} = "${fpgm_key}" ]; then run_train=${fpgm_trainer} run_export=${fpgm_export} elif [ ${trainer} = "${distill_key}" ]; then run_train=${distill_trainer} run_export=${distill_export} elif [ ${trainer} = "${trainer_key1}" ]; then run_train=${trainer_value1} run_export=${export_value1} elif [ ${trainer} = "${trainer_key2}" ]; then run_train=${trainer_value2} run_export=${export_value2} else continue fi if [ ${run_train} = "null" ]; then continue fi if [ ${autocast} = "amp" ]; then set_autocast="--amp" else set_autocast=" " fi set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}") set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") set_filename=$(func_set_params "filename" "${model_name}") set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}") set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" set_save_model=$(func_set_params "${save_model_key}" "${save_log}") nodes="1" if [ ${#gpu} -le 2 ];then # train with cpu or single gpu cmd="${python} ${run_train} LearningRate.base_lr=0.0001 log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_train_params1} ${set_autocast}" elif [ ${#ips} -le 15 ];then # train with multi-gpu cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_train_params1} ${set_autocast}" else # train with multi-machine IFS="," ips_array=(${ips}) nodes=${#ips_array[@]} save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}" IFS="|" set_save_model=$(func_set_params "${save_model_key}" "${save_log}") cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_train_params1} ${set_autocast}" fi # run train train_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}.log" eval "${cmd} > ${train_log_path} 2>&1" last_status=$? cat ${train_log_path} status_check $last_status "${cmd}" "${status_log}" "${model_name}" set_eval_trained_weight=$(func_set_params "${export_weight_key}" "${save_log}/${model_name}/${train_model_name}") # run eval if [ ${eval_py} != "null" ]; then set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}") eval_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_eval.log" eval_cmd="${python} ${eval_py} ${set_eval_trained_weight} ${set_use_gpu} ${set_eval_params1}" eval "${eval_cmd} > ${eval_log_path} 2>&1" last_status=$? cat ${eval_log_path} status_check $last_status "${eval_cmd}" "${status_log}" "${model_name}" fi # run export model if [ ${run_export} != "null" ]; then save_export_model_dir="${save_log}/${model_name}" set_export_weight=$(func_set_params "${export_weight_key}" "${save_log}/${model_name}/${train_model_name}") set_save_export_dir=$(func_set_params "${save_export_key}" "${save_log}") if [ ${export_onnx_key} = "export_onnx" ]; then # run export onnx model for rcnn export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} export_onnx=True ${set_save_export_dir} " eval $export_cmd status_check $? "${export_cmd}" "${status_log}" "${model_name}" # copy model for inference benchmark eval "cp ${save_export_model_dir}/* ${save_log}/" fi # run export model export_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_export.log" export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} ${set_save_export_dir} " eval "${export_cmd} > ${export_log_path} 2>&1" last_status=$? cat ${export_log_path} status_check $last_status "${export_cmd}" "${status_log}" "${model_name}" #run inference if [ ${export_onnx_key} != "export_onnx" ]; then # copy model for inference benchmark eval "cp ${save_export_model_dir}/* ${save_log}/" fi eval $env func_inference "${python}" "${inference_py}" "${save_export_model_dir}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" eval "unset CUDA_VISIBLE_DEVICES" fi done # done with: for trainer in ${trainer_list[*]}; do done # done with: for autocast in ${autocast_list[*]}; do done # done with: for gpu in ${gpu_list[*]}; do fi # end if [ ${MODE} = "infer" ]; then