# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import math import unittest import numpy as np from op_test import OpTest class GRUActivationType(OpTest): identity = 0 sigmoid = 1 tanh = 2 relu = 3 def identity(x): return x def sigmoid(x): return 1. / (1. + np.exp(-x)) def tanh(x): return 2. * sigmoid(2. * x) - 1. def relu(x): return np.maximum(x, 0) class TestGRUUnitOp(OpTest): batch_size = 5 frame_size = 10 activate = { GRUActivationType.identity: identity, GRUActivationType.sigmoid: sigmoid, GRUActivationType.tanh: tanh, GRUActivationType.relu: relu, } def set_inputs(self): batch_size = self.batch_size frame_size = self.frame_size self.op_type = 'gru_unit' self.inputs = { 'Input': np.random.uniform( -0.1, 0.1, (batch_size, frame_size * 3)).astype('float64'), 'HiddenPrev': np.random.uniform( -0.1, 0.1, (batch_size, frame_size)).astype('float64'), 'Weight': np.random.uniform( -1. / math.sqrt(frame_size), 1. / math.sqrt(frame_size), (frame_size, frame_size * 3)).astype('float64'), } self.attrs = { 'activation': GRUActivationType.tanh, 'gate_activation': GRUActivationType.sigmoid } def set_outputs(self, origin_mode=False): # GRU calculations batch_size = self.batch_size frame_size = self.frame_size x = self.inputs['Input'] h_p = self.inputs['HiddenPrev'] w = self.inputs['Weight'] b = self.inputs['Bias'] if 'Bias' in self.inputs else np.zeros( (1, frame_size * 3)) g = x + np.tile(b, (batch_size, 1)) w_u_r = w.flatten()[:frame_size * frame_size * 2].reshape( (frame_size, frame_size * 2)) u_r = self.activate[self.attrs['gate_activation']](np.dot( h_p, w_u_r) + g[:, :frame_size * 2]) u = u_r[:, :frame_size] r = u_r[:, frame_size:frame_size * 2] r_h_p = r * h_p w_c = w.flatten()[frame_size * frame_size * 2:].reshape( (frame_size, frame_size)) c = self.activate[self.attrs['activation']](np.dot(r_h_p, w_c) + g[:, frame_size * 2:]) g = np.hstack((u_r, c)) if origin_mode: h = (1 - u) * c + u * h_p else: h = u * c + (1 - u) * h_p self.outputs = { 'Gate': g.astype('float64'), 'ResetHiddenPrev': r_h_p.astype('float64'), 'Hidden': h.astype('float64') } def setUp(self): self.set_inputs() self.set_outputs() def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['Input', 'HiddenPrev', 'Weight'], ['Hidden']) class TestGRUUnitOpOriginMode(TestGRUUnitOp): def setUp(self): self.set_inputs() self.set_outputs(origin_mode=True) class TestGRUUnitOpWithBias(TestGRUUnitOp): def set_inputs(self): batch_size = self.batch_size frame_size = self.frame_size super(TestGRUUnitOpWithBias, self).set_inputs() self.inputs['Bias'] = np.random.uniform( -0.1, 0.1, (1, frame_size * 3)).astype('float64') self.attrs = { 'activation': GRUActivationType.identity, 'gate_activation': GRUActivationType.sigmoid } def test_check_grad(self): self.check_grad(['Input', 'HiddenPrev', 'Weight', 'Bias'], ['Hidden']) def test_check_grad_ingore_input(self): self.check_grad( ['HiddenPrev', 'Weight', 'Bias'], ['Hidden'], no_grad_set=set('Input')) class TestGRUUnitOpWithBiasOriginMode(TestGRUUnitOpWithBias): def setUp(self): self.set_inputs() self.set_outputs(origin_mode=True) if __name__ == '__main__': unittest.main()