[English](INSTALL.md) | 简体中文 # 安装文档 ## 环境要求 - PaddlePaddle 2.2 - OS 64位操作系统 - Python 3(3.5.1+/3.6/3.7/3.8/3.9),64位版本 - pip/pip3(9.0.1+),64位版本 - CUDA >= 10.1 - cuDNN >= 7.6 PaddleDetection 依赖 PaddlePaddle 版本关系: | PaddleDetection版本 | PaddlePaddle版本 | 备注 | | :------------------: | :---------------: | :-------: | | develop | >= 2.2.2 | 默认使用动态图模式 | | release/2.4 | >= 2.2.2 | 默认使用动态图模式 | | release/2.3 | >= 2.2.0rc | 默认使用动态图模式 | | release/2.2 | >= 2.1.2 | 默认使用动态图模式 | | release/2.1 | >= 2.1.0 | 默认使用动态图模式 | | release/2.0 | >= 2.0.1 | 默认使用动态图模式 | | release/2.0-rc | >= 2.0.1 | -- | | release/0.5 | >= 1.8.4 | 大部分模型>=1.8.4即可运行,Cascade R-CNN系列模型与SOLOv2依赖2.0.0.rc版本 | | release/0.4 | >= 1.8.4 | PP-YOLO依赖1.8.4 | | release/0.3 | >=1.7 | -- | ## 安装说明 ### 1. 安装PaddlePaddle ``` # CUDA10.1 python -m pip install paddlepaddle-gpu==2.2.0.post101 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html # CPU python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple ``` - 更多CUDA版本或环境快速安装,请参考[PaddlePaddle快速安装文档](https://www.paddlepaddle.org.cn/install/quick) - 更多安装方式例如conda或源码编译安装方法,请参考[PaddlePaddle安装文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/index_cn.html) 请确保您的PaddlePaddle安装成功并且版本不低于需求版本。使用以下命令进行验证。 ``` # 在您的Python解释器中确认PaddlePaddle安装成功 >>> import paddle >>> paddle.utils.run_check() # 确认PaddlePaddle版本 python -c "import paddle; print(paddle.__version__)" ``` **注意** 1. 如果您希望在多卡环境下使用PaddleDetection,请首先安装NCCL ### 2. 安装PaddleDetection **注意:** pip安装方式只支持Python3 ``` # 克隆PaddleDetection仓库 cd git clone https://github.com/PaddlePaddle/PaddleDetection.git # 安装其他依赖 cd PaddleDetection pip install -r requirements.txt # 编译安装paddledet python setup.py install ``` **注意** 1. 如果github下载代码较慢,可尝试使用[gitee](https://gitee.com/PaddlePaddle/PaddleDetection.git)或者[代理加速](https://doc.fastgit.org/zh-cn/guide.html)。 1. 若您使用的是Windows系统,由于原版cocoapi不支持Windows,`pycocotools`依赖可能安装失败,可采用第三方实现版本,该版本仅支持Python3 ```pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI``` 2. 若您使用的是Python <= 3.6的版本,安装`pycocotools`可能会报错`distutils.errors.DistutilsError: Could not find suitable distribution for Requirement.parse('cython>=0.27.3')`, 您可通过先安装`cython`如`pip install cython`解决该问题 安装后确认测试通过: ``` python ppdet/modeling/tests/test_architectures.py ``` 测试通过后会提示如下信息: ``` ....... ---------------------------------------------------------------------- Ran 7 tests in 12.816s OK ``` ## 使用Docker镜像 > 如果您没有Docker运行环境,请参考[Docker官网](https://www.docker.com/)进行安装。 我们提供了包含最新 PaddleDetection 代码的docker镜像,并预先安装好了所有的环境和库依赖,您只需要**拉取docker镜像**,然后**运行docker镜像**,无需其他任何额外操作,即可开始使用PaddleDetection的所有功能。 在[Docker Hub](https://hub.docker.com/repository/docker/paddlecloud/paddledetection)中获取这些镜像及相应的使用指南,包括CPU、GPU、ROCm版本。 如果您对自动化制作docker镜像感兴趣,或有自定义需求,请访问[PaddlePaddle/PaddleCloud](https://github.com/PaddlePaddle/PaddleCloud/tree/main/tekton)做进一步了解。 ## 快速体验 **恭喜!** 您已经成功安装了PaddleDetection,接下来快速体验目标检测效果 ``` # 在GPU上预测一张图片 export CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o use_gpu=true weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_img=demo/000000014439.jpg ``` 会在`output`文件夹下生成一个画有预测结果的同名图像。 结果如下图: ![](../images/000000014439.jpg)