# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The code is based on: # https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/sim_ota_assigner.py import paddle import numpy as np import paddle.nn.functional as F from ppdet.modeling.losses.varifocal_loss import varifocal_loss from ppdet.modeling.bbox_utils import batch_bbox_overlaps from ppdet.core.workspace import register @register class SimOTAAssigner(object): """Computes matching between predictions and ground truth. Args: center_radius (int | float, optional): Ground truth center size to judge whether a prior is in center. Default 2.5. candidate_topk (int, optional): The candidate top-k which used to get top-k ious to calculate dynamic-k. Default 10. iou_weight (int | float, optional): The scale factor for regression iou cost. Default 3.0. cls_weight (int | float, optional): The scale factor for classification cost. Default 1.0. num_classes (int): The num_classes of dataset. use_vfl (int): Whether to use varifocal_loss when calculating the cost matrix. """ __shared__ = ['num_classes'] def __init__(self, center_radius=2.5, candidate_topk=10, iou_weight=3.0, cls_weight=1.0, num_classes=80, use_vfl=True): self.center_radius = center_radius self.candidate_topk = candidate_topk self.iou_weight = iou_weight self.cls_weight = cls_weight self.num_classes = num_classes self.use_vfl = use_vfl def get_in_gt_and_in_center_info(self, flatten_center_and_stride, gt_bboxes): num_gt = gt_bboxes.shape[0] flatten_x = flatten_center_and_stride[:, 0].unsqueeze(1).tile( [1, num_gt]) flatten_y = flatten_center_and_stride[:, 1].unsqueeze(1).tile( [1, num_gt]) flatten_stride_x = flatten_center_and_stride[:, 2].unsqueeze(1).tile( [1, num_gt]) flatten_stride_y = flatten_center_and_stride[:, 3].unsqueeze(1).tile( [1, num_gt]) # is prior centers in gt bboxes, shape: [n_center, n_gt] l_ = flatten_x - gt_bboxes[:, 0] t_ = flatten_y - gt_bboxes[:, 1] r_ = gt_bboxes[:, 2] - flatten_x b_ = gt_bboxes[:, 3] - flatten_y deltas = paddle.stack([l_, t_, r_, b_], axis=1) is_in_gts = deltas.min(axis=1) > 0 is_in_gts_all = is_in_gts.sum(axis=1) > 0 # is prior centers in gt centers gt_center_xs = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0 gt_center_ys = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0 ct_bound_l = gt_center_xs - self.center_radius * flatten_stride_x ct_bound_t = gt_center_ys - self.center_radius * flatten_stride_y ct_bound_r = gt_center_xs + self.center_radius * flatten_stride_x ct_bound_b = gt_center_ys + self.center_radius * flatten_stride_y cl_ = flatten_x - ct_bound_l ct_ = flatten_y - ct_bound_t cr_ = ct_bound_r - flatten_x cb_ = ct_bound_b - flatten_y ct_deltas = paddle.stack([cl_, ct_, cr_, cb_], axis=1) is_in_cts = ct_deltas.min(axis=1) > 0 is_in_cts_all = is_in_cts.sum(axis=1) > 0 # in any of gts or gt centers, shape: [n_center] is_in_gts_or_centers_all = paddle.logical_or(is_in_gts_all, is_in_cts_all) is_in_gts_or_centers_all_inds = paddle.nonzero( is_in_gts_or_centers_all).squeeze(1) # both in gts and gt centers, shape: [num_fg, num_gt] is_in_gts_and_centers = paddle.logical_and( paddle.gather( is_in_gts.cast('int'), is_in_gts_or_centers_all_inds, axis=0).cast('bool'), paddle.gather( is_in_cts.cast('int'), is_in_gts_or_centers_all_inds, axis=0).cast('bool')) return is_in_gts_or_centers_all, is_in_gts_or_centers_all_inds, is_in_gts_and_centers def dynamic_k_matching(self, cost_matrix, pairwise_ious, num_gt): match_matrix = np.zeros_like(cost_matrix.numpy()) # select candidate topk ious for dynamic-k calculation topk_ious, _ = paddle.topk( pairwise_ious, min(self.candidate_topk, pairwise_ious.shape[0]), axis=0) # calculate dynamic k for each gt dynamic_ks = paddle.clip(topk_ious.sum(0).cast('int'), min=1) for gt_idx in range(num_gt): _, pos_idx = paddle.topk( cost_matrix[:, gt_idx], k=dynamic_ks[gt_idx], largest=False) match_matrix[:, gt_idx][pos_idx.numpy()] = 1.0 del topk_ious, dynamic_ks, pos_idx # match points more than two gts extra_match_gts_mask = match_matrix.sum(1) > 1 if extra_match_gts_mask.sum() > 0: cost_matrix = cost_matrix.numpy() cost_argmin = np.argmin( cost_matrix[extra_match_gts_mask, :], axis=1) match_matrix[extra_match_gts_mask, :] *= 0.0 match_matrix[extra_match_gts_mask, cost_argmin] = 1.0 # get foreground mask match_fg_mask_inmatrix = match_matrix.sum(1) > 0 match_gt_inds_to_fg = match_matrix[match_fg_mask_inmatrix, :].argmax(1) return match_gt_inds_to_fg, match_fg_mask_inmatrix def get_sample(self, assign_gt_inds, gt_bboxes): pos_inds = np.unique(np.nonzero(assign_gt_inds > 0)[0]) neg_inds = np.unique(np.nonzero(assign_gt_inds == 0)[0]) pos_assigned_gt_inds = assign_gt_inds[pos_inds] - 1 if gt_bboxes.size == 0: # hack for index error case assert pos_assigned_gt_inds.size == 0 pos_gt_bboxes = np.empty_like(gt_bboxes).reshape(-1, 4) else: if len(gt_bboxes.shape) < 2: gt_bboxes = gt_bboxes.resize(-1, 4) pos_gt_bboxes = gt_bboxes[pos_assigned_gt_inds, :] return pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds def __call__(self, flatten_cls_pred_scores, flatten_center_and_stride, flatten_bboxes, gt_bboxes, gt_labels, eps=1e-7): """Assign gt to priors using SimOTA. TODO: add comment. Returns: assign_result: The assigned result. """ num_gt = gt_bboxes.shape[0] num_bboxes = flatten_bboxes.shape[0] if num_gt == 0 or num_bboxes == 0: # No ground truth or boxes label = np.ones([num_bboxes], dtype=np.int64) * self.num_classes label_weight = np.ones([num_bboxes], dtype=np.float32) bbox_target = np.zeros_like(flatten_center_and_stride) return 0, label, label_weight, bbox_target is_in_gts_or_centers_all, is_in_gts_or_centers_all_inds, is_in_boxes_and_center = self.get_in_gt_and_in_center_info( flatten_center_and_stride, gt_bboxes) # bboxes and scores to calculate matrix valid_flatten_bboxes = flatten_bboxes[is_in_gts_or_centers_all_inds] valid_cls_pred_scores = flatten_cls_pred_scores[ is_in_gts_or_centers_all_inds] num_valid_bboxes = valid_flatten_bboxes.shape[0] pairwise_ious = batch_bbox_overlaps(valid_flatten_bboxes, gt_bboxes) # [num_points,num_gts] if self.use_vfl: gt_vfl_labels = gt_labels.squeeze(-1).unsqueeze(0).tile( [num_valid_bboxes, 1]).reshape([-1]) valid_pred_scores = valid_cls_pred_scores.unsqueeze(1).tile( [1, num_gt, 1]).reshape([-1, self.num_classes]) vfl_score = np.zeros(valid_pred_scores.shape) vfl_score[np.arange(0, vfl_score.shape[0]), gt_vfl_labels.numpy( )] = pairwise_ious.reshape([-1]) vfl_score = paddle.to_tensor(vfl_score) losses_vfl = varifocal_loss( valid_pred_scores, vfl_score, use_sigmoid=False).reshape([num_valid_bboxes, num_gt]) losses_giou = batch_bbox_overlaps( valid_flatten_bboxes, gt_bboxes, mode='giou') cost_matrix = ( losses_vfl * self.cls_weight + losses_giou * self.iou_weight + paddle.logical_not(is_in_boxes_and_center).cast('float32') * 100000000) else: iou_cost = -paddle.log(pairwise_ious + eps) gt_onehot_label = (F.one_hot( gt_labels.squeeze(-1).cast(paddle.int64), flatten_cls_pred_scores.shape[-1]).cast('float32').unsqueeze(0) .tile([num_valid_bboxes, 1, 1])) valid_pred_scores = valid_cls_pred_scores.unsqueeze(1).tile( [1, num_gt, 1]) cls_cost = F.binary_cross_entropy( valid_pred_scores, gt_onehot_label, reduction='none').sum(-1) cost_matrix = ( cls_cost * self.cls_weight + iou_cost * self.iou_weight + paddle.logical_not(is_in_boxes_and_center).cast('float32') * 100000000) match_gt_inds_to_fg, match_fg_mask_inmatrix = \ self.dynamic_k_matching( cost_matrix, pairwise_ious, num_gt) # sample and assign results assigned_gt_inds = np.zeros([num_bboxes], dtype=np.int64) match_fg_mask_inall = np.zeros_like(assigned_gt_inds) match_fg_mask_inall[is_in_gts_or_centers_all.numpy( )] = match_fg_mask_inmatrix assigned_gt_inds[match_fg_mask_inall.astype( np.bool)] = match_gt_inds_to_fg + 1 pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds \ = self.get_sample(assigned_gt_inds, gt_bboxes.numpy()) bbox_target = np.zeros_like(flatten_bboxes) bbox_weight = np.zeros_like(flatten_bboxes) label = np.ones([num_bboxes], dtype=np.int64) * self.num_classes label_weight = np.zeros([num_bboxes], dtype=np.float32) if len(pos_inds) > 0: gt_labels = gt_labels.numpy() pos_bbox_targets = pos_gt_bboxes bbox_target[pos_inds, :] = pos_bbox_targets bbox_weight[pos_inds, :] = 1.0 if not np.any(gt_labels): label[pos_inds] = 0 else: label[pos_inds] = gt_labels.squeeze(-1)[pos_assigned_gt_inds] label_weight[pos_inds] = 1.0 if len(neg_inds) > 0: label_weight[neg_inds] = 1.0 pos_num = max(pos_inds.size, 1) return pos_num, label, label_weight, bbox_target