worker_num: 2 TrainReader: sample_transforms: - Decode: {} - RandomResizeCrop: {resizes: [400, 500, 600], cropsizes: [[384, 600], ], prob: 0.5} - RandomResize: {target_size: [[480, 1333], [512, 1333], [544, 1333], [576, 1333], [608, 1333], [640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 2} - RandomFlip: {prob: 0.5} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} batch_size: 2 shuffle: true drop_last: true collate_batch: false EvalReader: sample_transforms: - Decode: {} - Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} batch_size: 1 shuffle: false drop_last: false drop_empty: false TestReader: inputs_def: image_shape: [-1, 3, 640, 640] sample_transforms: - Decode: {} - Resize: {interp: 2, target_size: 640, keep_ratio: True} - Pad: {size: 640} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_size: 1 shuffle: false drop_last: false