/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/platform/profiler.h" #include #include #include "gflags/gflags.h" #include "glog/logging.h" namespace paddle { namespace platform { // The profiler state, the initial value is ProfilerState::kDisabled static ProfilerState g_state = ProfilerState::kDisabled; // To record which timer the profiler used, CUDA or CPU. static std::string g_profiler_place = ""; // The thread local event list only can be accessed by the specific thread // The thread index of each thread static thread_local int32_t g_thread_id; // The g_next_thread_id is a global counter for threads, by the g_thread_id and // g_next_thread_id, we can know how many threads have created EventList. static uint32_t g_next_thread_id = 0; // The global mutex static std::mutex g_all_event_lists_mutex; // The total event lists of all threads static std::list> g_all_event_lists; // The thread local event list only can be accessed by the specific thread static thread_local std::shared_ptr g_event_list; inline uint64_t GetTimeInNsec() { using clock = std::conditional::type; return std::chrono::duration_cast( clock::now().time_since_epoch()) .count(); } Event::Event(EventKind kind, std::string name, uint32_t thread_id, DeviceContext* dev_ctx) : kind_(kind), name_(name), thread_id_(thread_id), has_cuda_(false) { #ifdef PADDLE_WITH_CUDA auto* cuda_dev_ctx = static_cast(dev_ctx); if (cuda_dev_ctx) { PADDLE_ENFORCE(cudaGetDevice(&device_)); PADDLE_ENFORCE(cudaEventCreate(&event_)); auto stream = cuda_dev_ctx->stream(); PADDLE_ENFORCE(cudaEventRecord(event_, stream)); has_cuda_ = true; } #endif cpu_ns_ = GetTimeInNsec(); } std::string Event::kind() const { switch (kind_) { case EventKind::kMark: return "mark"; case EventKind::kPushRange: return "push"; case EventKind::kPopRange: return "pop"; } PADDLE_THROW("Unknown EventKind."); } double Event::CpuElapsedMs(const Event& e) const { return (e.cpu_ns_ - cpu_ns_) / (1000000.0); } double Event::CudaElapsedMs(const Event& e) const { #ifdef PADDLE_WITH_CUDA PADDLE_ENFORCE(e.has_cuda() && has_cuda()); PADDLE_ENFORCE(e.device() == device()); PADDLE_ENFORCE(cudaEventSynchronize(event_)); PADDLE_ENFORCE(cudaEventSynchronize(e.event())); float ms; PADDLE_ENFORCE(cudaEventElapsedTime(&ms, event_, e.event())); return ms; #else PADDLE_THROW("CUDA is not enabled"); #endif } #ifdef PADDLE_WITH_CUDA static void ForEachDevice(std::function func) { auto original_device = GetCurrentDeviceId(); int count = GetCUDADeviceCount(); for (int i = 0; i < count; i++) { SetDeviceId(i); func(i); } SetDeviceId(original_device); } #endif inline EventList& GetEventList() { if (!g_event_list) { std::lock_guard guard(g_all_event_lists_mutex); g_event_list = std::make_shared(); g_thread_id = g_next_thread_id++; g_all_event_lists.emplace_front(g_event_list); } return *g_event_list; } void Mark(const std::string& name, DeviceContext* dev_ctx) { GetEventList().Record(EventKind::kMark, name, g_thread_id, dev_ctx); } void PushEvent(const std::string& name, DeviceContext* dev_ctx) { GetEventList().Record(EventKind::kPushRange, name, g_thread_id, dev_ctx); } void PopEvent(const std::string& name, DeviceContext* dev_ctx) { GetEventList().Record(EventKind::kPopRange, name, g_thread_id, dev_ctx); } RecordEvent::RecordEvent(const std::string& name, DeviceContext* dev_ctx) { if (g_state == ProfilerState::kDisabled) return; dev_ctx_ = dev_ctx; name_ = name; PushEvent(name_, dev_ctx_); } RecordEvent::~RecordEvent() { if (g_state == ProfilerState::kDisabled) return; PopEvent(name_, dev_ctx_); } void EnableProfiler(ProfilerState state) { PADDLE_ENFORCE(state != ProfilerState::kDisabled, "Can't enbale profling, since the input state is ", "ProfilerState::kDisabled"); PADDLE_ENFORCE(g_state == ProfilerState::kDisabled, "The profiling state should be disabled when calling ", "EnableProfiler."); g_state = state; g_profiler_place = (g_state == ProfilerState::kCUDA) ? "CUDA" : "CPU"; #ifdef PADDLE_WITH_CUDA if (g_state == ProfilerState::kCUDA) { // Generate some dummy evenets first to reduce the startup overhead. for (int i = 0; i < 5; i++) { ForEachDevice([](int d) { DeviceContext* dev_ctx = new CUDADeviceContext(CUDAPlace(d)); Mark("_cuda_startup_", dev_ctx); dev_ctx->Wait(); }); } } #endif // Mark the profiling start. Mark("_start_profiler_", nullptr); } std::vector> DisableProfiler() { PADDLE_ENFORCE(g_state != ProfilerState::kDisabled, "Can't disable profiling, since it's not starting."); // Mark the profiling stop. Mark("_stop_profiler_", nullptr); g_state = ProfilerState::kDisabled; std::vector> result; std::lock_guard guard(g_all_event_lists_mutex); for (auto it = g_all_event_lists.begin(); it != g_all_event_lists.end(); ++it) { result.emplace_back((*it)->Reduce()); } return result; } void ParseEvents(std::vector>& events, EventSortingKey sorted_by) { if (g_profiler_place == "") return; std::vector> events_table; size_t max_name_width = 0; for (size_t i = 0; i < events.size(); i++) { std::list pushed_events; std::vector event_items; std::unordered_map event_idx; for (size_t j = 0; j < events[i].size(); j++) { if (events[i][j].kind() == "push") { pushed_events.push_back(events[i][j]); } else if (events[i][j].kind() == "pop") { std::list::reverse_iterator rit = pushed_events.rbegin(); while (rit != pushed_events.rend() && rit->name() != events[i][j].name()) { ++rit; } if (rit != pushed_events.rend()) { double event_time = (g_profiler_place == "CUDA") ? rit->CudaElapsedMs(events[i][j]) : rit->CpuElapsedMs(events[i][j]); std::string event_name = "thread" + std::to_string(rit->thread_id()) + "::" + rit->name(); max_name_width = std::max(max_name_width, event_name.size()); if (event_idx.find(event_name) == event_idx.end()) { event_idx[event_name] = event_items.size(); EventItem event_item = {event_name, 1, event_time, event_time, event_time, event_time}; event_items.push_back(event_item); } else { int index = event_idx[event_name]; event_items[index].calls += 1; // total time event_items[index].total_time += event_time; // min time event_items[index].min_time = std::min(event_time, event_items[index].min_time); // max time event_items[index].max_time = std::max(event_time, event_items[index].max_time); } // remove the push marker from the list pushed_events.erase((++rit).base()); } else { LOG(WARNING) << "Cannot find the push marker of event \'" << events[i][j].name() << "\', which will be ignored in profiling report."; } } } // average time for (auto& item : event_items) { item.ave_time = item.total_time / item.calls; } // sort if (sorted_by != EventSortingKey::kDefault) { std::sort(event_items.begin(), event_items.end(), [&](EventItem& a, EventItem& b) { switch (sorted_by) { case EventSortingKey::kCalls: return a.calls > b.calls; case EventSortingKey::kTotal: return a.total_time > b.total_time; case EventSortingKey::kMin: return a.min_time > b.min_time; case EventSortingKey::kMax: return a.max_time > b.max_time; default: return a.ave_time > b.ave_time; } }); } events_table.push_back(event_items); // log warning if there are events with `push` but without `pop` std::list::reverse_iterator rit = pushed_events.rbegin(); while (rit != pushed_events.rend()) { LOG(WARNING) << "Cannot find the pop marker of event \'" << rit->name() << "\', which will be ignored in profiling report."; ++rit; } } // Print report PrintProfilingReport(events_table, sorted_by, max_name_width + 4, 12); } void PrintProfilingReport(std::vector>& events_table, EventSortingKey sorted_by, const size_t name_width, const size_t data_width) { // Output header information std::cout << "\n------------------------->" << " Profiling Report " << "<-------------------------\n\n"; std::cout << "Place: " << g_profiler_place << std::endl; std::cout << "Time unit: ms" << std::endl; std::string sort_domain = "event end time"; switch (sorted_by) { case EventSortingKey::kCalls: sort_domain = "number of calls"; break; case EventSortingKey::kTotal: sort_domain = "total time"; break; case EventSortingKey::kMin: sort_domain = "minimum time"; break; case EventSortingKey::kMax: sort_domain = "maximum time"; break; case EventSortingKey::kAve: sort_domain = "average time"; break; default: break; } std::cout << "Sorted by " << sort_domain << " in descending order in the same thread\n\n"; // Output events table std::cout.setf(std::ios::left); std::cout << std::setw(name_width) << "Event" << std::setw(data_width) << "Calls" << std::setw(data_width) << "Total" << std::setw(data_width) << "Min." << std::setw(data_width) << "Max." << std::setw(data_width) << "Ave." << std::endl; for (size_t i = 0; i < events_table.size(); ++i) { for (size_t j = 0; j < events_table[i].size(); ++j) { EventItem& event_item = events_table[i][j]; std::cout << std::setw(name_width) << event_item.name << std::setw(data_width) << event_item.calls << std::setw(data_width) << event_item.total_time << std::setw(data_width) << event_item.min_time << std::setw(data_width) << event_item.max_time << std::setw(data_width) << event_item.ave_time << std::endl; } } std::cout << std::endl; } } // namespace platform } // namespace paddle