// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include #include #include #include namespace PaddleDetection { // Object for storing all preprocessed data class ImageBlob { public: // image width and height std::vector im_shape_; // Buffer for image data after preprocessing std::vector im_data_; // input image width, height std::vector input_shape_; // Evaluation image width and height //std::vector eval_im_size_f_; // Scale factor for image size to origin image size std::vector scale_factor_; }; // Abstraction of preprocessing opration class class PreprocessOp { public: virtual void Init(const YAML::Node& item, const std::vector image_shape) = 0; virtual void Run(cv::Mat* im, ImageBlob* data) = 0; }; class InitInfo : public PreprocessOp{ public: virtual void Init(const YAML::Node& item, const std::vector image_shape) {} virtual void Run(cv::Mat* im, ImageBlob* data); }; class Normalize : public PreprocessOp { public: virtual void Init(const YAML::Node& item, const std::vector image_shape) { mean_ = item["mean"].as>(); scale_ = item["std"].as>(); is_scale_ = item["is_scale"].as(); } virtual void Run(cv::Mat* im, ImageBlob* data); private: // CHW or HWC std::vector mean_; std::vector scale_; bool is_scale_; }; class Permute : public PreprocessOp { public: virtual void Init(const YAML::Node& item, const std::vector image_shape) {} virtual void Run(cv::Mat* im, ImageBlob* data); }; class Resize : public PreprocessOp { public: virtual void Init(const YAML::Node& item, const std::vector image_shape) { interp_ = item["interp"].as(); //max_size_ = item["target_size"].as(); keep_ratio_ = item["keep_ratio"].as(); target_size_ = item["target_size"].as>(); if (item["keep_ratio"]) { input_shape_ = image_shape; } } // Compute best resize scale for x-dimension, y-dimension std::pair GenerateScale(const cv::Mat& im); virtual void Run(cv::Mat* im, ImageBlob* data); private: int interp_; bool keep_ratio_; std::vector target_size_; std::vector input_shape_; }; // Models with FPN need input shape % stride == 0 class PadStride : public PreprocessOp { public: virtual void Init(const YAML::Node& item, const std::vector image_shape) { stride_ = item["stride"].as(); } virtual void Run(cv::Mat* im, ImageBlob* data); private: int stride_; }; class Preprocessor { public: void Init(const YAML::Node& config_node, const std::vector image_shape) { // initialize image info at first ops_["InitInfo"] = std::make_shared(); for (const auto& item : config_node) { auto op_name = item["type"].as(); ops_[op_name] = CreateOp(op_name); ops_[op_name]->Init(item, image_shape); } } std::shared_ptr CreateOp(const std::string& name) { if (name == "ResizeOp") { return std::make_shared(); } else if (name == "PermuteOp") { return std::make_shared(); } else if (name == "NormalizeImageOp") { return std::make_shared(); } else if (name == "PadBatchOp") { return std::make_shared(); } return nullptr; } void Run(cv::Mat* im, ImageBlob* data); public: static const std::vector RUN_ORDER; private: std::unordered_map> ops_; }; } // namespace PaddleDetection