worker_num: 2 TrainReader: inputs_def: fields: ['image', 'gt_bbox', 'gt_class', 'gt_score', 'im_shape', 'scale_factor'] num_max_boxes: 50 sample_transforms: - DecodeOp: {} - MixupOp: {alpha: 1.5, beta: 1.5} - RandomDistortOp: {} - RandomExpandOp: {fill_value: [123.675, 116.28, 103.53]} - RandomCropOp: {} - RandomFlipOp: {} batch_transforms: - BatchRandomResizeOp: {target_size: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608], random_size: True, random_interp: True, keep_ratio: False} - NormalizeBoxOp: {} - PadBoxOp: {num_max_boxes: 50} - BboxXYXY2XYWHOp: {} - NormalizeImageOp: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} - PermuteOp: {} - Gt2YoloTargetOp: {anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]], anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], downsample_ratios: [32, 16, 8]} batch_size: 8 shuffle: true drop_last: true EvalReader: inputs_def: fields: ['image', 'im_shape', 'scale_factor', 'im_id'] num_max_boxes: 50 sample_transforms: - DecodeOp: {} - ResizeOp: {target_size: [608, 608], keep_ratio: False, interp: 2} - NormalizeImageOp: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} - PadBoxOp: {num_max_boxes: 50} - PermuteOp: {} batch_size: 1 drop_empty: false TestReader: inputs_def: image_shape: [3, 608, 608] fields: ['image', 'im_shape', 'scale_factor', 'im_id'] sample_transforms: - DecodeOp: {} - ResizeOp: {target_size: [608, 608], keep_ratio: False, interp: 2} - NormalizeImageOp: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} - PermuteOp: {} batch_size: 1