# DETRs Beat YOLOs on Real-time Object Detection ## 最新动态 - 发布RT-DETR-R50和RT-DETR-R101的代码和预训练模型 - 发布RT-DETR-L和RT-DETR-X的代码和预训练模型 - 发布RT-DETR-R50-m模型(scale模型的范例) - 发布RT-DETR-R34模型 - 发布RT-DETR-R18模型 - 发布RT-DETR-Swin和RT-DETR-FocalNet模型 ## 简介 RT-DETR是第一个实时端到端目标检测器。具体而言,我们设计了一个高效的混合编码器,通过解耦尺度内交互和跨尺度融合来高效处理多尺度特征,并提出了IoU感知的查询选择机制,以优化解码器查询的初始化。此外,RT-DETR支持通过使用不同的解码器层来灵活调整推理速度,而不需要重新训练,这有助于实时目标检测器的实际应用。RT-DETR-L在COCO val2017上实现了53.0%的AP,在T4 GPU上实现了114FPS,RT-DETR-X实现了54.8%的AP和74FPS,在速度和精度方面都优于相同规模的所有YOLO检测器。RT-DETR-R50实现了53.1%的AP和108FPS,RT-DETR-R101实现了54.3%的AP和74FPS,在精度上超过了全部使用相同骨干网络的DETR检测器。 若要了解更多细节,请参考我们的论文[paper](https://arxiv.org/abs/2304.08069).
## 基础模型 | Model | Epoch | backbone | input shape | $AP^{val}$ | $AP^{val}_{50}$| Params(M) | FLOPs(G) | T4 TensorRT FP16(FPS) | Pretrained Model | config | |:--------------:|:-----:|:----------:| :-------:|:--------------------------:|:---------------------------:|:---------:|:--------:| :---------------------: |:------------------------------------------------------------------------------------:|:-------------------------------------------:| | RT-DETR-R18 | 6x | ResNet-18 | 640 | 46.5 | 63.8 | 20 | 60 | 217 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_r18vd_dec3_6x_coco.pdparams) | [config](./rtdetr_r18vd_6x_coco.yml) | RT-DETR-R34 | 6x | ResNet-34 | 640 | 48.9 | 66.8 | 31 | 92 | 161 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_r34vd_dec4_6x_coco.pdparams) | [config](./rtdetr_r34vd_6x_coco.yml) | RT-DETR-R50-m | 6x | ResNet-50 | 640 | 51.3 | 69.6 | 36 | 100 | 145 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_m_6x_coco.pdparams) | [config](./rtdetr_r50vd_m_6x_coco.yml) | RT-DETR-R50 | 6x | ResNet-50 | 640 | 53.1 | 71.3 | 42 | 136 | 108 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams) | [config](./rtdetr_r50vd_6x_coco.yml) | RT-DETR-R101 | 6x | ResNet-101 | 640 | 54.3 | 72.7 | 76 | 259 | 74 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_r101vd_6x_coco.pdparams) | [config](./rtdetr_r101vd_6x_coco.yml) | RT-DETR-L | 6x | HGNetv2 | 640 | 53.0 | 71.6 | 32 | 110 | 114 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_hgnetv2_l_6x_coco.pdparams) | [config](rtdetr_hgnetv2_l_6x_coco.yml) | RT-DETR-X | 6x | HGNetv2 | 640 | 54.8 | 73.1 | 67 | 234 | 74 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_hgnetv2_x_6x_coco.pdparams) | [config](rtdetr_hgnetv2_x_6x_coco.yml) ## 高精度模型 | Model | Epoch | backbone | input shape | $AP^{val}$ | $AP^{val}_{50}$ | Pretrained Model | config | |:-----:|:-----:|:---------:| :---------:|:-----------:|:---------------:|:----------------:|:------:| | RT-DETR-Swin | 3x | Swin_L_384 | 640 | 56.2 | 73.5 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_swin_L_384_3x_coco.pdparams) | [config](./rtdetr_swin_L_384_3x_coco.yml) | RT-DETR-FocalNet | 3x | FocalNet_L_384 | 640 | 56.9 | 74.3 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_focalnet_L_384_3x_coco.pdparams) | [config](./rtdetr_focalnet_L_384_3x_coco.yml) **注意事项:** - RT-DETR 基础模型均使用4个GPU训练。 - RT-DETR 在COCO train2017上训练,并在val2017上评估。 - 高精度模型RT-DETR-Swin和RT-DETR-FocalNet使用8个GPU训练,显存需求较高。 ## 快速开始
依赖包: - PaddlePaddle >= 2.4.1
安装 - [安装指导文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md)
训练&评估 - 单卡GPU上训练: ```shell # training on single-GPU export CUDA_VISIBLE_DEVICES=0 python tools/train.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml --eval ``` - 多卡GPU上训练: ```shell # training on multi-GPU export CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml --fleet --eval ``` - 评估: ```shell python tools/eval.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml \ -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams ``` - 测试: ```shell python tools/infer.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml \ -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams \ --infer_img=./demo/000000570688.jpg ``` 详情请参考[快速开始文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED.md).
## 部署
1. 导出模型 ```shell cd PaddleDetection python tools/export_model.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml \ -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams trt=True \ --output_dir=output_inference ```
2. 转换模型至ONNX - 安装[Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX) 和 ONNX ```shell pip install onnx==1.13.0 pip install paddle2onnx==1.0.5 ``` - 转换模型: ```shell paddle2onnx --model_dir=./output_inference/rtdetr_r50vd_6x_coco/ \ --model_filename model.pdmodel \ --params_filename model.pdiparams \ --opset_version 16 \ --save_file rtdetr_r50vd_6x_coco.onnx ```
3. 转换成TensorRT(可选) - 确保TensorRT的版本>=8.5.1 - TRT推理可以参考[RT-DETR](https://github.com/lyuwenyu/RT-DETR)的部分代码或者其他网络资源 ```shell trtexec --onnx=./rtdetr_r50vd_6x_coco.onnx \ --workspace=4096 \ --shapes=image:1x3x640x640 \ --saveEngine=rtdetr_r50vd_6x_coco.trt \ --avgRuns=100 \ --fp16 ``` -
## 量化压缩 详细步骤请参考:[RT-DETR自动化量化压缩](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/deploy/auto_compression#rt-detr) | 模型 | Base mAP | ACT量化mAP | TRT-FP32 | TRT-FP16 | TRT-INT8 | 配置文件 | 量化模型 | | :---------------- | :------- | :--------: | :------: | :------: | :--------: | :----------------------------------------------------------: | :----------------------------------------------------------: | | RT-DETR-R50 | 53.1 | 53.0 | 32.05ms | 9.12ms | **6.96ms** | [config](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/auto_compression/detection/configs/rtdetr_r50vd_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/rtdetr_r50vd_6x_coco_quant.tar) | | RT-DETR-R101 | 54.3 | 54.1 | 54.13ms | 12.68ms | **9.20ms** | [config](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/auto_compression/detection/configs/rtdetr_r101vd_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/rtdetr_r101vd_6x_coco_quant.tar) | | RT-DETR-HGNetv2-L | 53.0 | 52.9 | 26.16ms | 8.54ms | **6.65ms** | [config](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/auto_compression/detection/configs/rtdetr_hgnetv2_l_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/rtdetr_hgnetv2_l_6x_coco_quant.tar) | | RT-DETR-HGNetv2-X | 54.8 | 54.6 | 49.22ms | 12.50ms | **9.24ms** | [config](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/auto_compression/detection/configs/rtdetr_hgnetv2_x_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/rtdetr_hgnetv2_x_6x_coco_quant.tar) | - 上表测试环境:Tesla T4,TensorRT 8.6.0,CUDA 11.7,batch_size=1。 - 也可直接参考:[PaddleSlim自动化压缩示例](https://github.com/PaddlePaddle/PaddleSlim/tree/develop/example/auto_compression/detection) ## 其他
1. 参数量和计算量统计 可以使用以下代码片段实现参数量和计算量的统计 ``` import paddle from ppdet.core.workspace import load_config, merge_config from ppdet.core.workspace import create cfg_path = './configs/rtdetr/rtdetr_r50vd_6x_coco.yml' cfg = load_config(cfg_path) model = create(cfg.architecture) blob = { 'image': paddle.randn([1, 3, 640, 640]), 'im_shape': paddle.to_tensor([[640], [640]]), 'scale_factor': paddle.to_tensor([[1.], [1.]]) } paddle.flops(model, None, blob, custom_ops=None, print_detail=False) ```
2. YOLOs端到端速度测速 - 可以参考[RT-DETR](https://github.com/lyuwenyu/RT-DETR) benchmark部分或者其他网络资源
## 引用RT-DETR 如果需要在你的研究中使用RT-DETR,请通过以下方式引用我们的论文: ``` @misc{lv2023detrs, title={DETRs Beat YOLOs on Real-time Object Detection}, author={Wenyu Lv and Shangliang Xu and Yian Zhao and Guanzhong Wang and Jinman Wei and Cheng Cui and Yuning Du and Qingqing Dang and Yi Liu}, year={2023}, eprint={2304.08069}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```