# 人脸检测模型 ## 简介 `face_detection`中提供高效、高速的人脸检测解决方案,包括最先进的模型和经典模型。 ![](../../docs/images/12_Group_Group_12_Group_Group_12_935.jpg) ## 模型库 #### WIDER-FACE数据集上的mAP | 网络结构 | 输入尺寸 | 图片个数/GPU | 学习率策略 | Easy/Medium/Hard Set | 预测时延(SD855)| 模型大小(MB) | 下载 | 配置文件 | |:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:| | BlazeFace | 640 | 8 | 1000e | 0.889 / 0.859 / 0.740 | - | 0.472 |[下载链接](https://paddledet.bj.bcebos.com/models/blazeface_1000e.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/face_detection/blazeface_1000e.yml) | **注意:** - 我们使用多尺度评估策略得到`Easy/Medium/Hard Set`里的mAP。具体细节请参考[在WIDER-FACE数据集上评估](#在WIDER-FACE数据集上评估)。 ## 快速开始 ### 数据准备 我们使用[WIDER-FACE数据集](http://shuoyang1213.me/WIDERFACE/)进行训练和模型测试,官方网站提供了详细的数据介绍。 - WIDER-Face数据源: 使用如下目录结构加载`wider_face`类型的数据集: ``` dataset/wider_face/ ├── wider_face_split │ ├── wider_face_train_bbx_gt.txt │ ├── wider_face_val_bbx_gt.txt ├── WIDER_train │ ├── images │ │ ├── 0--Parade │ │ │ ├── 0_Parade_marchingband_1_100.jpg │ │ │ ├── 0_Parade_marchingband_1_381.jpg │ │ │ │ ... │ │ ├── 10--People_Marching │ │ │ ... ├── WIDER_val │ ├── images │ │ ├── 0--Parade │ │ │ ├── 0_Parade_marchingband_1_1004.jpg │ │ │ ├── 0_Parade_marchingband_1_1045.jpg │ │ │ │ ... │ │ ├── 10--People_Marching │ │ │ ... ``` - 手动下载数据集: 要下载WIDER-FACE数据集,请运行以下命令: ``` cd dataset/wider_face && ./download_wider_face.sh ``` ### 训练与评估 训练流程与评估流程方法与其他算法一致,请参考[GETTING_STARTED_cn.md](../../docs/tutorials/GETTING_STARTED_cn.md)。 **注意:** - 人脸检测模型目前不支持边训练边评估。 #### 在WIDER-FACE数据集上评估 评估并生成结果文件: ```shell python -u tools/eval.py -c configs/face_detection/blazeface_1000e.yml \ -o weights=output/blazeface_1000e/model_final \ multi_scale=True ``` 设置`multi_scale=True`进行多尺度评估,评估完成后,将在`output/pred`中生成txt格式的测试结果。 - 下载官方评估脚本来评估AP指标: ``` wget http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/eval_script/eval_tools.zip unzip eval_tools.zip && rm -f eval_tools.zip ``` - 在`eval_tools/wider_eval.m`中修改保存结果路径和绘制曲线的名称: ``` # Modify the folder name where the result is stored. pred_dir = './pred'; # Modify the name of the curve to be drawn legend_name = 'Fluid-BlazeFace'; ``` - `wider_eval.m` 是评估模块的主要执行程序。运行命令如下: ``` matlab -nodesktop -nosplash -nojvm -r "run wider_eval.m;quit;" ``` ## Citations ``` @article{bazarevsky2019blazeface, title={BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs}, author={Valentin Bazarevsky and Yury Kartynnik and Andrey Vakunov and Karthik Raveendran and Matthias Grundmann}, year={2019}, eprint={1907.05047}, archivePrefix={arXiv}, ```