architecture: FCOS max_iters: 90000 use_gpu: true snapshot_iter: 5000 log_smooth_window: 20 log_iter: 20 save_dir: output pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar metric: COCO weights: output/fcos_r50_fpn_1x/model_final num_classes: 81 FCOS: backbone: ResNet fpn: FPN fcos_head: FCOSHead ResNet: norm_type: affine_channel norm_decay: 0. depth: 50 feature_maps: [3, 4, 5] freeze_at: 2 dcn_v2_stages: [3, 4, 5] FPN: min_level: 3 max_level: 7 num_chan: 256 use_c5: false spatial_scale: [0.03125, 0.0625, 0.125] has_extra_convs: true FCOSHead: num_classes: 81 fpn_stride: [8, 16, 32, 64, 128] num_convs: 4 norm_type: "gn" fcos_loss: FCOSLoss norm_reg_targets: True centerness_on_reg: True use_dcn_in_tower: True nms: MultiClassNMS MultiClassNMS: score_threshold: 0.025 nms_top_k: 1000 keep_top_k: 100 nms_threshold: 0.6 background_label: -1 FCOSLoss: loss_alpha: 0.25 loss_gamma: 2.0 iou_loss_type: "giou" reg_weights: 1.0 LearningRate: base_lr: 0.01 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [60000, 80000] - !LinearWarmup start_factor: 0.3333333333333333 steps: 500 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0001 type: L2 TrainReader: inputs_def: fields: ['image', 'gt_bbox', 'gt_class', 'gt_score', 'im_info'] dataset: !COCODataSet image_dir: train2017 anno_path: annotations/instances_train2017.json dataset_dir: dataset/coco with_background: true sample_transforms: - !DecodeImage to_rgb: true - !RandomFlipImage prob: 0.5 - !NormalizeImage is_channel_first: false is_scale: true mean: [0.485,0.456,0.406] std: [0.229, 0.224,0.225] - !ResizeImage target_size: 800 max_size: 1333 interp: 1 use_cv2: true - !Permute to_bgr: false channel_first: true batch_transforms: - !PadBatch pad_to_stride: 128 use_padded_im_info: false - !Gt2FCOSTarget object_sizes_boundary: [64, 128, 256, 512] center_sampling_radius: 1.5 downsample_ratios: [8, 16, 32, 64, 128] norm_reg_targets: True batch_size: 2 shuffle: true worker_num: 16 use_process: false EvalReader: inputs_def: fields: ['image', 'im_id', 'im_shape', 'im_info'] dataset: !COCODataSet image_dir: val2017 anno_path: annotations/instances_val2017.json dataset_dir: dataset/coco with_background: false sample_transforms: - !DecodeImage to_rgb: true with_mixup: false - !NormalizeImage is_channel_first: false is_scale: true mean: [0.485,0.456,0.406] std: [0.229, 0.224,0.225] - !ResizeImage target_size: 800 max_size: 1333 interp: 1 use_cv2: true - !Permute channel_first: true to_bgr: false batch_transforms: - !PadBatch pad_to_stride: 128 use_padded_im_info: true batch_size: 8 shuffle: false worker_num: 2 use_process: false TestReader: inputs_def: # set image_shape if needed fields: ['image', 'im_id', 'im_shape', 'im_info'] dataset: !ImageFolder anno_path: annotations/instances_val2017.json with_background: false sample_transforms: - !DecodeImage to_rgb: true with_mixup: false - !NormalizeImage is_channel_first: false is_scale: true mean: [0.485,0.456,0.406] std: [0.229, 0.224,0.225] - !ResizeImage interp: 1 max_size: 1333 target_size: 800 use_cv2: true - !Permute channel_first: true to_bgr: false batch_transforms: - !PadBatch pad_to_stride: 128 use_padded_im_info: true batch_size: 1 shuffle: false