# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # function: # operators to process sample, # eg: decode/resize/crop image from __future__ import absolute_import from __future__ import print_function from __future__ import division try: from collections.abc import Sequence except Exception: from collections import Sequence from numbers import Number, Integral import uuid import random import math import numpy as np import os import copy import logging import cv2 from PIL import Image, ImageDraw import pickle import threading MUTEX = threading.Lock() import paddle from ppdet.core.workspace import serializable from ..reader import Compose from .op_helper import (satisfy_sample_constraint, filter_and_process, generate_sample_bbox, clip_bbox, data_anchor_sampling, satisfy_sample_constraint_coverage, crop_image_sampling, generate_sample_bbox_square, bbox_area_sampling, is_poly, get_border) from ppdet.utils.logger import setup_logger from ppdet.modeling.keypoint_utils import get_affine_transform, affine_transform logger = setup_logger(__name__) registered_ops = [] def register_op(cls): registered_ops.append(cls.__name__) if not hasattr(BaseOperator, cls.__name__): setattr(BaseOperator, cls.__name__, cls) else: raise KeyError("The {} class has been registered.".format(cls.__name__)) return serializable(cls) class BboxError(ValueError): pass class ImageError(ValueError): pass class BaseOperator(object): def __init__(self, name=None): if name is None: name = self.__class__.__name__ self._id = name + '_' + str(uuid.uuid4())[-6:] def apply(self, sample, context=None): """ Process a sample. Args: sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx} context (dict): info about this sample processing Returns: result (dict): a processed sample """ return sample def __call__(self, sample, context=None): """ Process a sample. Args: sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx} context (dict): info about this sample processing Returns: result (dict): a processed sample """ if isinstance(sample, Sequence): for i in range(len(sample)): sample[i] = self.apply(sample[i], context) else: sample = self.apply(sample, context) return sample def __str__(self): return str(self._id) @register_op class Decode(BaseOperator): def __init__(self): """ Transform the image data to numpy format following the rgb format """ super(Decode, self).__init__() def apply(self, sample, context=None): """ load image if 'im_file' field is not empty but 'image' is""" if 'image' not in sample: with open(sample['im_file'], 'rb') as f: sample['image'] = f.read() sample.pop('im_file') try: im = sample['image'] data = np.frombuffer(im, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode if 'keep_ori_im' in sample and sample['keep_ori_im']: sample['ori_image'] = im im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) except: im = sample['image'] sample['image'] = im if 'h' not in sample: sample['h'] = im.shape[0] elif sample['h'] != im.shape[0]: logger.warning( "The actual image height: {} is not equal to the " "height: {} in annotation, and update sample['h'] by actual " "image height.".format(im.shape[0], sample['h'])) sample['h'] = im.shape[0] if 'w' not in sample: sample['w'] = im.shape[1] elif sample['w'] != im.shape[1]: logger.warning( "The actual image width: {} is not equal to the " "width: {} in annotation, and update sample['w'] by actual " "image width.".format(im.shape[1], sample['w'])) sample['w'] = im.shape[1] sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32) sample['scale_factor'] = np.array([1., 1.], dtype=np.float32) return sample def _make_dirs(dirname): try: from pathlib import Path except ImportError: from pathlib2 import Path Path(dirname).mkdir(exist_ok=True) @register_op class DecodeCache(BaseOperator): def __init__(self, cache_root=None): '''decode image and caching ''' super(DecodeCache, self).__init__() self.use_cache = False if cache_root is None else True self.cache_root = cache_root if cache_root is not None: _make_dirs(cache_root) def apply(self, sample, context=None): if self.use_cache and os.path.exists( self.cache_path(self.cache_root, sample['im_file'])): path = self.cache_path(self.cache_root, sample['im_file']) im = self.load(path) else: if 'image' not in sample: with open(sample['im_file'], 'rb') as f: sample['image'] = f.read() im = sample['image'] data = np.frombuffer(im, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode if 'keep_ori_im' in sample and sample['keep_ori_im']: sample['ori_image'] = im im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) if self.use_cache and not os.path.exists( self.cache_path(self.cache_root, sample['im_file'])): path = self.cache_path(self.cache_root, sample['im_file']) self.dump(im, path) sample['image'] = im sample['h'] = im.shape[0] sample['w'] = im.shape[1] sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32) sample['scale_factor'] = np.array([1., 1.], dtype=np.float32) sample.pop('im_file') return sample @staticmethod def cache_path(dir_oot, im_file): return os.path.join(dir_oot, os.path.basename(im_file) + '.pkl') @staticmethod def load(path): with open(path, 'rb') as f: im = pickle.load(f) return im @staticmethod def dump(obj, path): MUTEX.acquire() try: with open(path, 'wb') as f: pickle.dump(obj, f) except Exception as e: logger.warning('dump {} occurs exception {}'.format(path, str(e))) finally: MUTEX.release() @register_op class SniperDecodeCrop(BaseOperator): def __init__(self): super(SniperDecodeCrop, self).__init__() def __call__(self, sample, context=None): if 'image' not in sample: with open(sample['im_file'], 'rb') as f: sample['image'] = f.read() sample.pop('im_file') im = sample['image'] data = np.frombuffer(im, dtype='uint8') im = cv2.imdecode(data, cv2.IMREAD_COLOR) # BGR mode, but need RGB mode if 'keep_ori_im' in sample and sample['keep_ori_im']: sample['ori_image'] = im im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) chip = sample['chip'] x1, y1, x2, y2 = [int(xi) for xi in chip] im = im[max(y1, 0):min(y2, im.shape[0]), max(x1, 0):min(x2, im.shape[ 1]), :] sample['image'] = im h = im.shape[0] w = im.shape[1] # sample['im_info'] = [h, w, 1.0] sample['h'] = h sample['w'] = w sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32) sample['scale_factor'] = np.array([1., 1.], dtype=np.float32) return sample @register_op class Permute(BaseOperator): def __init__(self): """ Change the channel to be (C, H, W) """ super(Permute, self).__init__() def apply(self, sample, context=None): im = sample['image'] im = im.transpose((2, 0, 1)) sample['image'] = im if 'pre_image' in sample: pre_im = sample['pre_image'] pre_im = pre_im.transpose((2, 0, 1)) sample['pre_image'] = pre_im return sample @register_op class Lighting(BaseOperator): """ Lighting the image by eigenvalues and eigenvectors Args: eigval (list): eigenvalues eigvec (list): eigenvectors alphastd (float): random weight of lighting, 0.1 by default """ def __init__(self, eigval, eigvec, alphastd=0.1): super(Lighting, self).__init__() self.alphastd = alphastd self.eigval = np.array(eigval).astype('float32') self.eigvec = np.array(eigvec).astype('float32') def apply(self, sample, context=None): alpha = np.random.normal(scale=self.alphastd, size=(3, )) sample['image'] += np.dot(self.eigvec, self.eigval * alpha) if 'pre_image' in sample: sample['pre_image'] += np.dot(self.eigvec, self.eigval * alpha) return sample @register_op class RandomErasingImage(BaseOperator): def __init__(self, prob=0.5, lower=0.02, higher=0.4, aspect_ratio=0.3): """ Random Erasing Data Augmentation, see https://arxiv.org/abs/1708.04896 Args: prob (float): probability to carry out random erasing lower (float): lower limit of the erasing area ratio higher (float): upper limit of the erasing area ratio aspect_ratio (float): aspect ratio of the erasing region """ super(RandomErasingImage, self).__init__() self.prob = prob self.lower = lower self.higher = higher self.aspect_ratio = aspect_ratio def apply(self, sample, context=None): gt_bbox = sample['gt_bbox'] im = sample['image'] if not isinstance(im, np.ndarray): raise TypeError("{}: image is not a numpy array.".format(self)) if len(im.shape) != 3: raise ImageError("{}: image is not 3-dimensional.".format(self)) for idx in range(gt_bbox.shape[0]): if self.prob <= np.random.rand(): continue x1, y1, x2, y2 = gt_bbox[idx, :] w_bbox = x2 - x1 h_bbox = y2 - y1 area = w_bbox * h_bbox target_area = random.uniform(self.lower, self.higher) * area aspect_ratio = random.uniform(self.aspect_ratio, 1 / self.aspect_ratio) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < w_bbox and h < h_bbox: off_y1 = random.randint(0, int(h_bbox - h)) off_x1 = random.randint(0, int(w_bbox - w)) im[int(y1 + off_y1):int(y1 + off_y1 + h), int(x1 + off_x1):int( x1 + off_x1 + w), :] = 0 sample['image'] = im return sample @register_op class NormalizeImage(BaseOperator): def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_scale=True, norm_type='mean_std'): """ Args: mean (list): the pixel mean std (list): the pixel variance is_scale (bool): scale the pixel to [0,1] norm_type (str): type in ['mean_std', 'none'] """ super(NormalizeImage, self).__init__() self.mean = mean self.std = std self.is_scale = is_scale self.norm_type = norm_type if not (isinstance(self.mean, list) and isinstance(self.std, list) and isinstance(self.is_scale, bool) and self.norm_type in ['mean_std', 'none']): raise TypeError("{}: input type is invalid.".format(self)) from functools import reduce if reduce(lambda x, y: x * y, self.std) == 0: raise ValueError('{}: std is invalid!'.format(self)) def apply(self, sample, context=None): """Normalize the image. Operators: 1.(optional) Scale the pixel to [0,1] 2.(optional) Each pixel minus mean and is divided by std """ im = sample['image'] im = im.astype(np.float32, copy=False) if self.is_scale: scale = 1.0 / 255.0 im *= scale if self.norm_type == 'mean_std': mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im -= mean im /= std sample['image'] = im if 'pre_image' in sample: pre_im = sample['pre_image'] pre_im = pre_im.astype(np.float32, copy=False) if self.is_scale: scale = 1.0 / 255.0 pre_im *= scale if self.norm_type == 'mean_std': mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] pre_im -= mean pre_im /= std sample['pre_image'] = pre_im return sample @register_op class GridMask(BaseOperator): def __init__(self, use_h=True, use_w=True, rotate=1, offset=False, ratio=0.5, mode=1, prob=0.7, upper_iter=360000): """ GridMask Data Augmentation, see https://arxiv.org/abs/2001.04086 Args: use_h (bool): whether to mask vertically use_w (boo;): whether to mask horizontally rotate (float): angle for the mask to rotate offset (float): mask offset ratio (float): mask ratio mode (int): gridmask mode prob (float): max probability to carry out gridmask upper_iter (int): suggested to be equal to global max_iter """ super(GridMask, self).__init__() self.use_h = use_h self.use_w = use_w self.rotate = rotate self.offset = offset self.ratio = ratio self.mode = mode self.prob = prob self.upper_iter = upper_iter from .gridmask_utils import Gridmask self.gridmask_op = Gridmask( use_h, use_w, rotate=rotate, offset=offset, ratio=ratio, mode=mode, prob=prob, upper_iter=upper_iter) def apply(self, sample, context=None): sample['image'] = self.gridmask_op(sample['image'], sample['curr_iter']) return sample @register_op class RandomDistort(BaseOperator): """Random color distortion. Args: hue (list): hue settings. in [lower, upper, probability] format. saturation (list): saturation settings. in [lower, upper, probability] format. contrast (list): contrast settings. in [lower, upper, probability] format. brightness (list): brightness settings. in [lower, upper, probability] format. random_apply (bool): whether to apply in random (yolo) or fixed (SSD) order. count (int): the number of doing distrot random_channel (bool): whether to swap channels randomly """ def __init__(self, hue=[-18, 18, 0.5], saturation=[0.5, 1.5, 0.5], contrast=[0.5, 1.5, 0.5], brightness=[0.5, 1.5, 0.5], random_apply=True, count=4, random_channel=False, prob=1.0): super(RandomDistort, self).__init__() self.hue = hue self.saturation = saturation self.contrast = contrast self.brightness = brightness self.random_apply = random_apply self.count = count self.random_channel = random_channel self.prob = prob def apply_hue(self, img): low, high, prob = self.hue if np.random.uniform(0., 1.) < prob: return img img = img.astype(np.float32) # it works, but result differ from HSV version delta = np.random.uniform(low, high) u = np.cos(delta * np.pi) w = np.sin(delta * np.pi) bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]]) tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321], [0.211, -0.523, 0.311]]) ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647], [1.0, -1.107, 1.705]]) t = np.dot(np.dot(ityiq, bt), tyiq).T img = np.dot(img, t) return img def apply_saturation(self, img): low, high, prob = self.saturation if np.random.uniform(0., 1.) < prob: return img delta = np.random.uniform(low, high) img = img.astype(np.float32) # it works, but result differ from HSV version gray = img * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32) gray = gray.sum(axis=2, keepdims=True) gray *= (1.0 - delta) img *= delta img += gray return img def apply_contrast(self, img): low, high, prob = self.contrast if np.random.uniform(0., 1.) < prob: return img delta = np.random.uniform(low, high) img = img.astype(np.float32) img *= delta return img def apply_brightness(self, img): low, high, prob = self.brightness if np.random.uniform(0., 1.) < prob: return img delta = np.random.uniform(low, high) img = img.astype(np.float32) img += delta return img def apply(self, sample, context=None): if random.random() > self.prob: return sample img = sample['image'] if self.random_apply: functions = [ self.apply_brightness, self.apply_contrast, self.apply_saturation, self.apply_hue ] distortions = np.random.permutation(functions)[:self.count] for func in distortions: img = func(img) sample['image'] = img return sample img = self.apply_brightness(img) mode = np.random.randint(0, 2) if mode: img = self.apply_contrast(img) img = self.apply_saturation(img) img = self.apply_hue(img) if not mode: img = self.apply_contrast(img) if self.random_channel: if np.random.randint(0, 2): img = img[..., np.random.permutation(3)] sample['image'] = img return sample @register_op class PhotoMetricDistortion(BaseOperator): """Apply photometric distortion to image sequentially, every transformation is applied with a probability of 0.5. The position of random contrast is in second or second to last. 1. random brightness 2. random contrast (mode 0) 3. convert color from BGR to HSV 4. random saturation 5. random hue 6. convert color from HSV to BGR 7. random contrast (mode 1) 8. randomly swap channels Args: brightness_delta (int): delta of brightness. contrast_range (tuple): range of contrast. saturation_range (tuple): range of saturation. hue_delta (int): delta of hue. """ def __init__(self, brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18): super(PhotoMetricDistortion, self).__init__() self.brightness_delta = brightness_delta self.contrast_lower, self.contrast_upper = contrast_range self.saturation_lower, self.saturation_upper = saturation_range self.hue_delta = hue_delta def apply(self, results, context=None): """Call function to perform photometric distortion on images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with images distorted. """ img = results['image'] img = img.astype(np.float32) # random brightness if np.random.randint(2): delta = np.random.uniform(-self.brightness_delta, self.brightness_delta) img += delta # mode == 0 --> do random contrast first # mode == 1 --> do random contrast last mode = np.random.randint(2) if mode == 1: if np.random.randint(2): alpha = np.random.uniform(self.contrast_lower, self.contrast_upper) img *= alpha # convert color from BGR to HSV img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # random saturation if np.random.randint(2): img[..., 1] *= np.random.uniform(self.saturation_lower, self.saturation_upper) # random hue if np.random.randint(2): img[..., 0] += np.random.uniform(-self.hue_delta, self.hue_delta) img[..., 0][img[..., 0] > 360] -= 360 img[..., 0][img[..., 0] < 0] += 360 # convert color from HSV to BGR img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR) # random contrast if mode == 0: if np.random.randint(2): alpha = np.random.uniform(self.contrast_lower, self.contrast_upper) img *= alpha # randomly swap channels if np.random.randint(2): img = img[..., np.random.permutation(3)] results['image'] = img return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(\nbrightness_delta={self.brightness_delta},\n' repr_str += 'contrast_range=' repr_str += f'{(self.contrast_lower, self.contrast_upper)},\n' repr_str += 'saturation_range=' repr_str += f'{(self.saturation_lower, self.saturation_upper)},\n' repr_str += f'hue_delta={self.hue_delta})' return repr_str @register_op class AutoAugment(BaseOperator): def __init__(self, autoaug_type="v1"): """ Args: autoaug_type (str): autoaug type, support v0, v1, v2, v3, test """ super(AutoAugment, self).__init__() self.autoaug_type = autoaug_type def apply(self, sample, context=None): """ Learning Data Augmentation Strategies for Object Detection, see https://arxiv.org/abs/1906.11172 """ im = sample['image'] gt_bbox = sample['gt_bbox'] if not isinstance(im, np.ndarray): raise TypeError("{}: image is not a numpy array.".format(self)) if len(im.shape) != 3: raise ImageError("{}: image is not 3-dimensional.".format(self)) if len(gt_bbox) == 0: return sample height, width, _ = im.shape norm_gt_bbox = np.ones_like(gt_bbox, dtype=np.float32) norm_gt_bbox[:, 0] = gt_bbox[:, 1] / float(height) norm_gt_bbox[:, 1] = gt_bbox[:, 0] / float(width) norm_gt_bbox[:, 2] = gt_bbox[:, 3] / float(height) norm_gt_bbox[:, 3] = gt_bbox[:, 2] / float(width) from .autoaugment_utils import distort_image_with_autoaugment im, norm_gt_bbox = distort_image_with_autoaugment(im, norm_gt_bbox, self.autoaug_type) gt_bbox[:, 0] = norm_gt_bbox[:, 1] * float(width) gt_bbox[:, 1] = norm_gt_bbox[:, 0] * float(height) gt_bbox[:, 2] = norm_gt_bbox[:, 3] * float(width) gt_bbox[:, 3] = norm_gt_bbox[:, 2] * float(height) sample['image'] = im sample['gt_bbox'] = gt_bbox return sample @register_op class RandomFlip(BaseOperator): def __init__(self, prob=0.5): """ Args: prob (float): the probability of flipping image """ super(RandomFlip, self).__init__() self.prob = prob if not (isinstance(self.prob, float)): raise TypeError("{}: input type is invalid.".format(self)) def apply_segm(self, segms, height, width): def _flip_poly(poly, width): flipped_poly = np.array(poly) flipped_poly[0::2] = width - np.array(poly[0::2]) return flipped_poly.tolist() def _flip_rle(rle, height, width): if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, height, width) mask = mask_util.decode(rle) mask = mask[:, ::-1] rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8)) return rle flipped_segms = [] for segm in segms: if is_poly(segm): # Polygon format flipped_segms.append([_flip_poly(poly, width) for poly in segm]) else: # RLE format import pycocotools.mask as mask_util flipped_segms.append(_flip_rle(segm, height, width)) return flipped_segms def apply_keypoint(self, gt_keypoint, width): for i in range(gt_keypoint.shape[1]): if i % 2 == 0: old_x = gt_keypoint[:, i].copy() gt_keypoint[:, i] = width - old_x return gt_keypoint def apply_image(self, image): return image[:, ::-1, :] def apply_bbox(self, bbox, width): oldx1 = bbox[:, 0].copy() oldx2 = bbox[:, 2].copy() bbox[:, 0] = width - oldx2 bbox[:, 2] = width - oldx1 return bbox def apply(self, sample, context=None): """Filp the image and bounding box. Operators: 1. Flip the image numpy. 2. Transform the bboxes' x coordinates. (Must judge whether the coordinates are normalized!) 3. Transform the segmentations' x coordinates. (Must judge whether the coordinates are normalized!) Output: sample: the image, bounding box and segmentation part in sample are flipped. """ if np.random.uniform(0, 1) < self.prob: im = sample['image'] height, width = im.shape[:2] im = self.apply_image(im) if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], width) if 'gt_poly' in sample and len(sample['gt_poly']) > 0: sample['gt_poly'] = self.apply_segm(sample['gt_poly'], height, width) if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0: sample['gt_keypoint'] = self.apply_keypoint( sample['gt_keypoint'], width) if 'semantic' in sample and sample['semantic']: sample['semantic'] = sample['semantic'][:, ::-1] if 'gt_segm' in sample and sample['gt_segm'].any(): sample['gt_segm'] = sample['gt_segm'][:, :, ::-1] sample['flipped'] = True sample['image'] = im return sample @register_op class Resize(BaseOperator): def __init__(self, target_size, keep_ratio, interp=cv2.INTER_LINEAR): """ Resize image to target size. if keep_ratio is True, resize the image's long side to the maximum of target_size if keep_ratio is False, resize the image to target size(h, w) Args: target_size (int|list): image target size keep_ratio (bool): whether keep_ratio or not, default true interp (int): the interpolation method """ super(Resize, self).__init__() self.keep_ratio = keep_ratio self.interp = interp if not isinstance(target_size, (Integral, Sequence)): raise TypeError( "Type of target_size is invalid. Must be Integer or List or Tuple, now is {}". format(type(target_size))) if isinstance(target_size, Integral): target_size = [target_size, target_size] self.target_size = target_size def apply_image(self, image, scale): im_scale_x, im_scale_y = scale return cv2.resize( image, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) def apply_bbox(self, bbox, scale, size): im_scale_x, im_scale_y = scale resize_w, resize_h = size bbox[:, 0::2] *= im_scale_x bbox[:, 1::2] *= im_scale_y bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w) bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h) return bbox def apply_area(self, area, scale): im_scale_x, im_scale_y = scale return area * im_scale_x * im_scale_y def apply_joints(self, joints, scale, size): im_scale_x, im_scale_y = scale resize_w, resize_h = size joints[..., 0] *= im_scale_x joints[..., 1] *= im_scale_y joints[..., 0] = np.clip(joints[..., 0], 0, resize_w) joints[..., 1] = np.clip(joints[..., 1], 0, resize_h) return joints def apply_segm(self, segms, im_size, scale): def _resize_poly(poly, im_scale_x, im_scale_y): resized_poly = np.array(poly).astype('float32') resized_poly[0::2] *= im_scale_x resized_poly[1::2] *= im_scale_y return resized_poly.tolist() def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y): if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, im_h, im_w) mask = mask_util.decode(rle) mask = cv2.resize( mask, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8)) return rle im_h, im_w = im_size im_scale_x, im_scale_y = scale resized_segms = [] for segm in segms: if is_poly(segm): # Polygon format resized_segms.append([ _resize_poly(poly, im_scale_x, im_scale_y) for poly in segm ]) else: # RLE format import pycocotools.mask as mask_util resized_segms.append( _resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y)) return resized_segms def apply(self, sample, context=None): """ Resize the image numpy. """ im = sample['image'] if not isinstance(im, np.ndarray): raise TypeError("{}: image type is not numpy.".format(self)) # apply image if len(im.shape) == 3: im_shape = im.shape else: im_shape = im[0].shape if self.keep_ratio: im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = min(target_size_min / im_size_min, target_size_max / im_size_max) resize_h = int(im_scale * float(im_shape[0]) + 0.5) resize_w = int(im_scale * float(im_shape[1]) + 0.5) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / im_shape[0] im_scale_x = resize_w / im_shape[1] if len(im.shape) == 3: im = self.apply_image(sample['image'], [im_scale_x, im_scale_y]) sample['image'] = im.astype(np.float32) else: resized_images = [] for one_im in im: applied_im = self.apply_image(one_im, [im_scale_x, im_scale_y]) resized_images.append(applied_im) sample['image'] = np.array(resized_images) # 2d keypoints resize if 'kps2d' in sample.keys(): kps2d = sample['kps2d'] kps2d[:, :, 0] = kps2d[:, :, 0] * im_scale_x kps2d[:, :, 1] = kps2d[:, :, 1] * im_scale_y sample['kps2d'] = kps2d sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32) if 'scale_factor' in sample: scale_factor = sample['scale_factor'] sample['scale_factor'] = np.asarray( [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x], dtype=np.float32) else: sample['scale_factor'] = np.asarray( [im_scale_y, im_scale_x], dtype=np.float32) # apply bbox if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], [im_scale_x, im_scale_y], [resize_w, resize_h]) # apply areas if 'gt_areas' in sample: sample['gt_areas'] = self.apply_area(sample['gt_areas'], [im_scale_x, im_scale_y]) # apply polygon if 'gt_poly' in sample and len(sample['gt_poly']) > 0: sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_shape[:2], [im_scale_x, im_scale_y]) # apply semantic if 'semantic' in sample and sample['semantic']: semantic = sample['semantic'] semantic = cv2.resize( semantic.astype('float32'), None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) semantic = np.asarray(semantic).astype('int32') semantic = np.expand_dims(semantic, 0) sample['semantic'] = semantic # apply gt_segm if 'gt_segm' in sample and len(sample['gt_segm']) > 0: masks = [ cv2.resize( gt_segm, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=cv2.INTER_NEAREST) for gt_segm in sample['gt_segm'] ] sample['gt_segm'] = np.asarray(masks).astype(np.uint8) if 'gt_joints' in sample: sample['gt_joints'] = self.apply_joints(sample['gt_joints'], [im_scale_x, im_scale_y], [resize_w, resize_h]) return sample @register_op class MultiscaleTestResize(BaseOperator): def __init__(self, origin_target_size=[800, 1333], target_size=[], interp=cv2.INTER_LINEAR, use_flip=True): """ Rescale image to the each size in target size, and capped at max_size. Args: origin_target_size (list): origin target size of image target_size (list): A list of target sizes of image. interp (int): the interpolation method. use_flip (bool): whether use flip augmentation. """ super(MultiscaleTestResize, self).__init__() self.interp = interp self.use_flip = use_flip if not isinstance(target_size, Sequence): raise TypeError( "Type of target_size is invalid. Must be List or Tuple, now is {}". format(type(target_size))) self.target_size = target_size if not isinstance(origin_target_size, Sequence): raise TypeError( "Type of origin_target_size is invalid. Must be List or Tuple, now is {}". format(type(origin_target_size))) self.origin_target_size = origin_target_size def apply(self, sample, context=None): """ Resize the image numpy for multi-scale test. """ samples = [] resizer = Resize( self.origin_target_size, keep_ratio=True, interp=self.interp) samples.append(resizer(sample.copy(), context)) if self.use_flip: flipper = RandomFlip(1.1) samples.append(flipper(sample.copy(), context=context)) for size in self.target_size: resizer = Resize(size, keep_ratio=True, interp=self.interp) samples.append(resizer(sample.copy(), context)) return samples @register_op class RandomResize(BaseOperator): def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR, random_range=False, random_size=True, random_interp=False): """ Resize image to target size randomly. random target_size and interpolation method Args: target_size (int, list, tuple): image target size, if random size is True, must be list or tuple keep_ratio (bool): whether keep_raio or not, default true interp (int): the interpolation method random_range (bool): whether random select target size of image, the target_size must be a [[min_short_edge, long_edge], [max_short_edge, long_edge]] random_size (bool): whether random select target size of image random_interp (bool): whether random select interpolation method """ super(RandomResize, self).__init__() self.keep_ratio = keep_ratio self.interp = interp self.interps = [ cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4, ] assert isinstance(target_size, ( Integral, Sequence)), "target_size must be Integer, List or Tuple" if (random_range or random_size) and not isinstance(target_size, Sequence): raise TypeError( "Type of target_size is invalid when random_size or random_range is True. Must be List or Tuple, now is {}". format(type(target_size))) if random_range and not len(target_size) == 2: raise TypeError( "target_size must be two list as [[min_short_edge, long_edge], [max_short_edge, long_edge]] when random_range is True." ) self.target_size = target_size self.random_range = random_range self.random_size = random_size self.random_interp = random_interp def apply(self, sample, context=None): """ Resize the image numpy. """ if self.random_range: short_edge = np.random.randint(self.target_size[0][0], self.target_size[1][0] + 1) long_edge = max(self.target_size[0][1], self.target_size[1][1] + 1) target_size = [short_edge, long_edge] else: if self.random_size: target_size = random.choice(self.target_size) else: target_size = self.target_size if self.random_interp: interp = random.choice(self.interps) else: interp = self.interp resizer = Resize(target_size, self.keep_ratio, interp) return resizer(sample, context=context) @register_op class RandomExpand(BaseOperator): """Random expand the canvas. Args: ratio (float): maximum expansion ratio. prob (float): probability to expand. fill_value (list): color value used to fill the canvas. in RGB order. """ def __init__(self, ratio=4., prob=0.5, fill_value=(127.5, 127.5, 127.5)): super(RandomExpand, self).__init__() assert ratio > 1.01, "expand ratio must be larger than 1.01" self.ratio = ratio self.prob = prob assert isinstance(fill_value, (Number, Sequence)), \ "fill value must be either float or sequence" if isinstance(fill_value, Number): fill_value = (fill_value, ) * 3 if not isinstance(fill_value, tuple): fill_value = tuple(fill_value) self.fill_value = fill_value def apply(self, sample, context=None): if np.random.uniform(0., 1.) < self.prob: return sample im = sample['image'] height, width = im.shape[:2] ratio = np.random.uniform(1., self.ratio) h = int(height * ratio) w = int(width * ratio) if not h > height or not w > width: return sample y = np.random.randint(0, h - height) x = np.random.randint(0, w - width) offsets, size = [x, y], [h, w] pad = Pad(size, pad_mode=-1, offsets=offsets, fill_value=self.fill_value) return pad(sample, context=context) @register_op class CropWithSampling(BaseOperator): def __init__(self, batch_sampler, satisfy_all=False, avoid_no_bbox=True): """ Args: batch_sampler (list): Multiple sets of different parameters for cropping. satisfy_all (bool): whether all boxes must satisfy. e.g.[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]] [max sample, max trial, min scale, max scale, min aspect ratio, max aspect ratio, min overlap, max overlap] avoid_no_bbox (bool): whether to avoid the situation where the box does not appear. """ super(CropWithSampling, self).__init__() self.batch_sampler = batch_sampler self.satisfy_all = satisfy_all self.avoid_no_bbox = avoid_no_bbox def apply(self, sample, context): """ Crop the image and modify bounding box. Operators: 1. Scale the image width and height. 2. Crop the image according to a radom sample. 3. Rescale the bounding box. 4. Determine if the new bbox is satisfied in the new image. Returns: sample: the image, bounding box are replaced. """ assert 'image' in sample, "image data not found" im = sample['image'] gt_bbox = sample['gt_bbox'] gt_class = sample['gt_class'] im_height, im_width = im.shape[:2] gt_score = None if 'gt_score' in sample: gt_score = sample['gt_score'] sampled_bbox = [] gt_bbox = gt_bbox.tolist() for sampler in self.batch_sampler: found = 0 for i in range(sampler[1]): if found >= sampler[0]: break sample_bbox = generate_sample_bbox(sampler) if satisfy_sample_constraint(sampler, sample_bbox, gt_bbox, self.satisfy_all): sampled_bbox.append(sample_bbox) found = found + 1 im = np.array(im) while sampled_bbox: idx = int(np.random.uniform(0, len(sampled_bbox))) sample_bbox = sampled_bbox.pop(idx) sample_bbox = clip_bbox(sample_bbox) crop_bbox, crop_class, crop_score = \ filter_and_process(sample_bbox, gt_bbox, gt_class, scores=gt_score) if self.avoid_no_bbox: if len(crop_bbox) < 1: continue xmin = int(sample_bbox[0] * im_width) xmax = int(sample_bbox[2] * im_width) ymin = int(sample_bbox[1] * im_height) ymax = int(sample_bbox[3] * im_height) im = im[ymin:ymax, xmin:xmax] sample['image'] = im sample['gt_bbox'] = crop_bbox sample['gt_class'] = crop_class sample['gt_score'] = crop_score return sample return sample @register_op class CropWithDataAchorSampling(BaseOperator): def __init__(self, batch_sampler, anchor_sampler=None, target_size=None, das_anchor_scales=[16, 32, 64, 128], sampling_prob=0.5, min_size=8., avoid_no_bbox=True): """ Args: anchor_sampler (list): anchor_sampling sets of different parameters for cropping. batch_sampler (list): Multiple sets of different parameters for cropping. e.g.[[1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]] [[1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0], [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0], [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0], [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0], [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]] [max sample, max trial, min scale, max scale, min aspect ratio, max aspect ratio, min overlap, max overlap, min coverage, max coverage] target_size (int): target image size. das_anchor_scales (list[float]): a list of anchor scales in data anchor smapling. min_size (float): minimum size of sampled bbox. avoid_no_bbox (bool): whether to avoid the situation where the box does not appear. """ super(CropWithDataAchorSampling, self).__init__() self.anchor_sampler = anchor_sampler self.batch_sampler = batch_sampler self.target_size = target_size self.sampling_prob = sampling_prob self.min_size = min_size self.avoid_no_bbox = avoid_no_bbox self.das_anchor_scales = np.array(das_anchor_scales) def apply(self, sample, context): """ Crop the image and modify bounding box. Operators: 1. Scale the image width and height. 2. Crop the image according to a radom sample. 3. Rescale the bounding box. 4. Determine if the new bbox is satisfied in the new image. Returns: sample: the image, bounding box are replaced. """ assert 'image' in sample, "image data not found" im = sample['image'] gt_bbox = sample['gt_bbox'] gt_class = sample['gt_class'] image_height, image_width = im.shape[:2] gt_bbox[:, 0] /= image_width gt_bbox[:, 1] /= image_height gt_bbox[:, 2] /= image_width gt_bbox[:, 3] /= image_height gt_score = None if 'gt_score' in sample: gt_score = sample['gt_score'] sampled_bbox = [] gt_bbox = gt_bbox.tolist() prob = np.random.uniform(0., 1.) if prob > self.sampling_prob: # anchor sampling assert self.anchor_sampler for sampler in self.anchor_sampler: found = 0 for i in range(sampler[1]): if found >= sampler[0]: break sample_bbox = data_anchor_sampling( gt_bbox, image_width, image_height, self.das_anchor_scales, self.target_size) if sample_bbox == 0: break if satisfy_sample_constraint_coverage(sampler, sample_bbox, gt_bbox): sampled_bbox.append(sample_bbox) found = found + 1 im = np.array(im) while sampled_bbox: idx = int(np.random.uniform(0, len(sampled_bbox))) sample_bbox = sampled_bbox.pop(idx) if 'gt_keypoint' in sample.keys(): keypoints = (sample['gt_keypoint'], sample['keypoint_ignore']) crop_bbox, crop_class, crop_score, gt_keypoints = \ filter_and_process(sample_bbox, gt_bbox, gt_class, scores=gt_score, keypoints=keypoints) else: crop_bbox, crop_class, crop_score = filter_and_process( sample_bbox, gt_bbox, gt_class, scores=gt_score) crop_bbox, crop_class, crop_score = bbox_area_sampling( crop_bbox, crop_class, crop_score, self.target_size, self.min_size) if self.avoid_no_bbox: if len(crop_bbox) < 1: continue im = crop_image_sampling(im, sample_bbox, image_width, image_height, self.target_size) height, width = im.shape[:2] crop_bbox[:, 0] *= width crop_bbox[:, 1] *= height crop_bbox[:, 2] *= width crop_bbox[:, 3] *= height sample['image'] = im sample['gt_bbox'] = crop_bbox sample['gt_class'] = crop_class if 'gt_score' in sample: sample['gt_score'] = crop_score if 'gt_keypoint' in sample.keys(): sample['gt_keypoint'] = gt_keypoints[0] sample['keypoint_ignore'] = gt_keypoints[1] return sample return sample else: for sampler in self.batch_sampler: found = 0 for i in range(sampler[1]): if found >= sampler[0]: break sample_bbox = generate_sample_bbox_square( sampler, image_width, image_height) if satisfy_sample_constraint_coverage(sampler, sample_bbox, gt_bbox): sampled_bbox.append(sample_bbox) found = found + 1 im = np.array(im) while sampled_bbox: idx = int(np.random.uniform(0, len(sampled_bbox))) sample_bbox = sampled_bbox.pop(idx) sample_bbox = clip_bbox(sample_bbox) if 'gt_keypoint' in sample.keys(): keypoints = (sample['gt_keypoint'], sample['keypoint_ignore']) crop_bbox, crop_class, crop_score, gt_keypoints = \ filter_and_process(sample_bbox, gt_bbox, gt_class, scores=gt_score, keypoints=keypoints) else: crop_bbox, crop_class, crop_score = filter_and_process( sample_bbox, gt_bbox, gt_class, scores=gt_score) # sampling bbox according the bbox area crop_bbox, crop_class, crop_score = bbox_area_sampling( crop_bbox, crop_class, crop_score, self.target_size, self.min_size) if self.avoid_no_bbox: if len(crop_bbox) < 1: continue xmin = int(sample_bbox[0] * image_width) xmax = int(sample_bbox[2] * image_width) ymin = int(sample_bbox[1] * image_height) ymax = int(sample_bbox[3] * image_height) im = im[ymin:ymax, xmin:xmax] height, width = im.shape[:2] crop_bbox[:, 0] *= width crop_bbox[:, 1] *= height crop_bbox[:, 2] *= width crop_bbox[:, 3] *= height sample['image'] = im sample['gt_bbox'] = crop_bbox sample['gt_class'] = crop_class if 'gt_score' in sample: sample['gt_score'] = crop_score if 'gt_keypoint' in sample.keys(): sample['gt_keypoint'] = gt_keypoints[0] sample['keypoint_ignore'] = gt_keypoints[1] return sample return sample @register_op class RandomCrop(BaseOperator): """Random crop image and bboxes. Args: aspect_ratio (list): aspect ratio of cropped region. in [min, max] format. thresholds (list): iou thresholds for decide a valid bbox crop. scaling (list): ratio between a cropped region and the original image. in [min, max] format. num_attempts (int): number of tries before giving up. allow_no_crop (bool): allow return without actually cropping them. cover_all_box (bool): ensure all bboxes are covered in the final crop. is_mask_crop(bool): whether crop the segmentation. """ def __init__(self, aspect_ratio=[.5, 2.], thresholds=[.0, .1, .3, .5, .7, .9], scaling=[.3, 1.], num_attempts=50, allow_no_crop=True, cover_all_box=False, is_mask_crop=False, ioumode="iou", prob=1.0): super(RandomCrop, self).__init__() self.aspect_ratio = aspect_ratio self.thresholds = thresholds self.scaling = scaling self.num_attempts = num_attempts self.allow_no_crop = allow_no_crop self.cover_all_box = cover_all_box self.is_mask_crop = is_mask_crop self.ioumode = ioumode self.prob = prob def crop_segms(self, segms, valid_ids, crop, height, width): def _crop_poly(segm, crop): xmin, ymin, xmax, ymax = crop crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin] crop_p = np.array(crop_coord).reshape(4, 2) crop_p = Polygon(crop_p) crop_segm = list() for poly in segm: poly = np.array(poly).reshape(len(poly) // 2, 2) polygon = Polygon(poly) if not polygon.is_valid: exterior = polygon.exterior multi_lines = exterior.intersection(exterior) polygons = shapely.ops.polygonize(multi_lines) polygon = MultiPolygon(polygons) multi_polygon = list() if isinstance(polygon, MultiPolygon): multi_polygon = copy.deepcopy(polygon) else: multi_polygon.append(copy.deepcopy(polygon)) for per_polygon in multi_polygon: inter = per_polygon.intersection(crop_p) if not inter: continue if isinstance(inter, (MultiPolygon, GeometryCollection)): for part in inter: if not isinstance(part, Polygon): continue part = np.squeeze( np.array(part.exterior.coords[:-1]).reshape(1, -1)) part[0::2] -= xmin part[1::2] -= ymin crop_segm.append(part.tolist()) elif isinstance(inter, Polygon): crop_poly = np.squeeze( np.array(inter.exterior.coords[:-1]).reshape(1, -1)) crop_poly[0::2] -= xmin crop_poly[1::2] -= ymin crop_segm.append(crop_poly.tolist()) else: continue return crop_segm def _crop_rle(rle, crop, height, width): if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, height, width) mask = mask_util.decode(rle) mask = mask[crop[1]:crop[3], crop[0]:crop[2]] rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8)) return rle crop_segms = [] for id in valid_ids: segm = segms[id] if is_poly(segm): import copy import shapely.ops from shapely.geometry import Polygon, MultiPolygon, GeometryCollection logging.getLogger("shapely").setLevel(logging.WARNING) # Polygon format crop_segms.append(_crop_poly(segm, crop)) else: # RLE format import pycocotools.mask as mask_util crop_segms.append(_crop_rle(segm, crop, height, width)) return crop_segms def set_fake_bboxes(self, sample): sample['gt_bbox'] = np.array( [ [32, 32, 128, 128], [32, 32, 128, 256], [32, 64, 128, 128], [32, 64, 128, 256], [64, 64, 128, 256], [64, 64, 256, 256], [64, 32, 128, 256], [64, 32, 128, 256], [96, 32, 128, 256], [96, 32, 128, 256], ], dtype=np.float32) sample['gt_class'] = np.array( [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]], np.int32) return sample def apply(self, sample, context=None): if random.random() > self.prob: return sample if 'gt_bbox' not in sample: # only used in semi-det as unsup data sample = self.set_fake_bboxes(sample) sample = self.random_crop(sample, fake_bboxes=True) return sample if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0: return sample sample = self.random_crop(sample) return sample def random_crop(self, sample, fake_bboxes=False): h, w = sample['image'].shape[:2] gt_bbox = sample['gt_bbox'] # NOTE Original method attempts to generate one candidate for each # threshold then randomly sample one from the resulting list. # Here a short circuit approach is taken, i.e., randomly choose a # threshold and attempt to find a valid crop, and simply return the # first one found. # The probability is not exactly the same, kinda resembling the # "Monty Hall" problem. Actually carrying out the attempts will affect # observability (just like opening doors in the "Monty Hall" game). thresholds = list(self.thresholds) if self.allow_no_crop: thresholds.append('no_crop') np.random.shuffle(thresholds) for thresh in thresholds: if thresh == 'no_crop': return sample found = False for i in range(self.num_attempts): scale = np.random.uniform(*self.scaling) if self.aspect_ratio is not None: min_ar, max_ar = self.aspect_ratio aspect_ratio = np.random.uniform( max(min_ar, scale**2), min(max_ar, scale**-2)) h_scale = scale / np.sqrt(aspect_ratio) w_scale = scale * np.sqrt(aspect_ratio) else: h_scale = np.random.uniform(*self.scaling) w_scale = np.random.uniform(*self.scaling) crop_h = h * h_scale crop_w = w * w_scale if self.aspect_ratio is None: if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0: continue crop_h = int(crop_h) crop_w = int(crop_w) crop_y = np.random.randint(0, h - crop_h) crop_x = np.random.randint(0, w - crop_w) crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h] if self.ioumode == "iof": iou = self._gtcropiou_matrix( gt_bbox, np.array( [crop_box], dtype=np.float32)) elif self.ioumode == "iou": iou = self._iou_matrix( gt_bbox, np.array( [crop_box], dtype=np.float32)) if iou.max() < thresh: continue if self.cover_all_box and iou.min() < thresh: continue cropped_box, valid_ids = self._crop_box_with_center_constraint( gt_bbox, np.array( crop_box, dtype=np.float32)) if valid_ids.size > 0: found = True break if found: if self.is_mask_crop and 'gt_poly' in sample and len(sample[ 'gt_poly']) > 0: crop_polys = self.crop_segms( sample['gt_poly'], valid_ids, np.array( crop_box, dtype=np.int64), h, w) if [] in crop_polys: delete_id = list() valid_polys = list() for id, crop_poly in enumerate(crop_polys): if crop_poly == []: delete_id.append(id) else: valid_polys.append(crop_poly) valid_ids = np.delete(valid_ids, delete_id) if len(valid_polys) == 0: return sample sample['gt_poly'] = valid_polys else: sample['gt_poly'] = crop_polys if 'gt_segm' in sample: sample['gt_segm'] = self._crop_segm(sample['gt_segm'], crop_box) sample['gt_segm'] = np.take( sample['gt_segm'], valid_ids, axis=0) sample['image'] = self._crop_image(sample['image'], crop_box) if fake_bboxes == True: return sample sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0) sample['gt_class'] = np.take( sample['gt_class'], valid_ids, axis=0) if 'gt_score' in sample: sample['gt_score'] = np.take( sample['gt_score'], valid_ids, axis=0) if 'is_crowd' in sample: sample['is_crowd'] = np.take( sample['is_crowd'], valid_ids, axis=0) if 'difficult' in sample: sample['difficult'] = np.take( sample['difficult'], valid_ids, axis=0) if 'gt_joints' in sample: sample['gt_joints'] = self._crop_joints(sample['gt_joints'], crop_box) return sample return sample def _iou_matrix(self, a, b): tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2]) br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2) area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) area_b = np.prod(b[:, 2:] - b[:, :2], axis=1) area_o = (area_a[:, np.newaxis] + area_b - area_i) return area_i / (area_o + 1e-10) def _gtcropiou_matrix(self, a, b): tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2]) br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2) area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) area_b = np.prod(b[:, 2:] - b[:, :2], axis=1) area_o = (area_a[:, np.newaxis] + area_b - area_i) return area_i / (area_a + 1e-10) def _crop_box_with_center_constraint(self, box, crop): cropped_box = box.copy() cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2]) cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:]) cropped_box[:, :2] -= crop[:2] cropped_box[:, 2:] -= crop[:2] centers = (box[:, :2] + box[:, 2:]) / 2 valid = np.logical_and(crop[:2] <= centers, centers < crop[2:]).all(axis=1) valid = np.logical_and( valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1)) return cropped_box, np.where(valid)[0] def _crop_image(self, img, crop): x1, y1, x2, y2 = crop return img[y1:y2, x1:x2, :] def _crop_segm(self, segm, crop): x1, y1, x2, y2 = crop return segm[:, y1:y2, x1:x2] def _crop_joints(self, joints, crop): x1, y1, x2, y2 = crop joints[joints[..., 0] > x2, :] = 0 joints[joints[..., 1] > y2, :] = 0 joints[joints[..., 0] < x1, :] = 0 joints[joints[..., 1] < y1, :] = 0 joints[..., 0] -= x1 joints[..., 1] -= y1 return joints @register_op class RandomScaledCrop(BaseOperator): """Resize image and bbox based on long side (with optional random scaling), then crop or pad image to target size. Args: target_size (int|list): target size, "hw" format. scale_range (list): random scale range. interp (int): interpolation method, default to `cv2.INTER_LINEAR`. fill_value (float|list|tuple): color value used to fill the canvas, in RGB order. """ def __init__(self, target_size=512, scale_range=[.1, 2.], interp=cv2.INTER_LINEAR, fill_value=(123.675, 116.28, 103.53)): super(RandomScaledCrop, self).__init__() assert isinstance(target_size, ( Integral, Sequence)), "target_size must be Integer, List or Tuple" if isinstance(target_size, Integral): target_size = [target_size, ] * 2 self.target_size = target_size self.scale_range = scale_range self.interp = interp assert isinstance(fill_value, (Number, Sequence)), \ "fill value must be either float or sequence" if isinstance(fill_value, Number): fill_value = (fill_value, ) * 3 if not isinstance(fill_value, tuple): fill_value = tuple(fill_value) self.fill_value = fill_value def apply_image(self, img, output_size, offset_x, offset_y): th, tw = self.target_size rh, rw = output_size img = cv2.resize( img, (rw, rh), interpolation=self.interp).astype(np.float32) canvas = np.ones([th, tw, 3], dtype=np.float32) canvas *= np.array(self.fill_value, dtype=np.float32) canvas[:min(th, rh), :min(tw, rw)] = \ img[offset_y:offset_y + th, offset_x:offset_x + tw] return canvas def apply_bbox(self, gt_bbox, gt_class, scale, offset_x, offset_y): th, tw = self.target_size shift_array = np.array( [ offset_x, offset_y, ] * 2, dtype=np.float32) boxes = gt_bbox * scale - shift_array boxes[:, 0::2] = np.clip(boxes[:, 0::2], 0, tw) boxes[:, 1::2] = np.clip(boxes[:, 1::2], 0, th) # filter boxes with no area area = np.prod(boxes[..., 2:] - boxes[..., :2], axis=1) valid = (area > 1.).nonzero()[0] return boxes[valid], gt_class[valid], valid def apply_segm(self, segms, output_size, offset_x, offset_y, valid=None): th, tw = self.target_size rh, rw = output_size out_segms = [] for segm in segms: segm = cv2.resize(segm, (rw, rh), interpolation=cv2.INTER_NEAREST) segm = segm.astype(np.float32) canvas = np.zeros([th, tw], dtype=segm.dtype) canvas[:min(th, rh), :min(tw, rw)] = \ segm[offset_y:offset_y + th, offset_x:offset_x + tw] out_segms.append(canvas) out_segms = np.stack(out_segms) return out_segms if valid is None else out_segms[valid] def apply(self, sample, context=None): img = sample['image'] h, w = img.shape[:2] random_scale = np.random.uniform(*self.scale_range) target_scale_size = [t * random_scale for t in self.target_size] # Compute actual rescaling applied to image. scale = min(target_scale_size[0] / h, target_scale_size[1] / w) output_size = [int(round(h * scale)), int(round(w * scale))] # get offset offset_x = int( max(0, np.random.uniform(0., output_size[1] - self.target_size[1]))) offset_y = int( max(0, np.random.uniform(0., output_size[0] - self.target_size[0]))) # apply to image sample['image'] = self.apply_image(img, output_size, offset_x, offset_y) # apply to bbox valid = None if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'], sample['gt_class'], valid = self.apply_bbox( sample['gt_bbox'], sample['gt_class'], scale, offset_x, offset_y) # apply to segm if 'gt_segm' in sample and len(sample['gt_segm']) > 0: sample['gt_segm'] = self.apply_segm(sample['gt_segm'], output_size, offset_x, offset_y, valid) sample['im_shape'] = np.asarray(output_size, dtype=np.float32) scale_factor = sample['scale_factor'] sample['scale_factor'] = np.asarray( [scale_factor[0] * scale, scale_factor[1] * scale], dtype=np.float32) return sample @register_op class Cutmix(BaseOperator): def __init__(self, alpha=1.5, beta=1.5): """ CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, see https://arxiv.org/abs/1905.04899 Cutmix image and gt_bbbox/gt_score Args: alpha (float): alpha parameter of beta distribute beta (float): beta parameter of beta distribute """ super(Cutmix, self).__init__() self.alpha = alpha self.beta = beta if self.alpha <= 0.0: raise ValueError("alpha shold be positive in {}".format(self)) if self.beta <= 0.0: raise ValueError("beta shold be positive in {}".format(self)) def apply_image(self, img1, img2, factor): """ _rand_bbox """ h = max(img1.shape[0], img2.shape[0]) w = max(img1.shape[1], img2.shape[1]) cut_rat = np.sqrt(1. - factor) cut_w = np.int32(w * cut_rat) cut_h = np.int32(h * cut_rat) # uniform cx = np.random.randint(w) cy = np.random.randint(h) bbx1 = np.clip(cx - cut_w // 2, 0, w - 1) bby1 = np.clip(cy - cut_h // 2, 0, h - 1) bbx2 = np.clip(cx + cut_w // 2, 0, w - 1) bby2 = np.clip(cy + cut_h // 2, 0, h - 1) img_1_pad = np.zeros((h, w, img1.shape[2]), 'float32') img_1_pad[:img1.shape[0], :img1.shape[1], :] = \ img1.astype('float32') img_2_pad = np.zeros((h, w, img2.shape[2]), 'float32') img_2_pad[:img2.shape[0], :img2.shape[1], :] = \ img2.astype('float32') img_1_pad[bby1:bby2, bbx1:bbx2, :] = img_2_pad[bby1:bby2, bbx1:bbx2, :] return img_1_pad def __call__(self, sample, context=None): if not isinstance(sample, Sequence): return sample assert len(sample) == 2, 'cutmix need two samples' factor = np.random.beta(self.alpha, self.beta) factor = max(0.0, min(1.0, factor)) if factor >= 1.0: return sample[0] if factor <= 0.0: return sample[1] img1 = sample[0]['image'] img2 = sample[1]['image'] img = self.apply_image(img1, img2, factor) gt_bbox1 = sample[0]['gt_bbox'] gt_bbox2 = sample[1]['gt_bbox'] gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0) gt_class1 = sample[0]['gt_class'] gt_class2 = sample[1]['gt_class'] gt_class = np.concatenate((gt_class1, gt_class2), axis=0) gt_score1 = np.ones_like(sample[0]['gt_class']) gt_score2 = np.ones_like(sample[1]['gt_class']) gt_score = np.concatenate( (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0) result = copy.deepcopy(sample[0]) result['image'] = img result['gt_bbox'] = gt_bbox result['gt_score'] = gt_score result['gt_class'] = gt_class if 'is_crowd' in sample[0]: is_crowd1 = sample[0]['is_crowd'] is_crowd2 = sample[1]['is_crowd'] is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0) result['is_crowd'] = is_crowd if 'difficult' in sample[0]: is_difficult1 = sample[0]['difficult'] is_difficult2 = sample[1]['difficult'] is_difficult = np.concatenate( (is_difficult1, is_difficult2), axis=0) result['difficult'] = is_difficult return result @register_op class Mixup(BaseOperator): def __init__(self, alpha=1.5, beta=1.5): """ Mixup image and gt_bbbox/gt_score Args: alpha (float): alpha parameter of beta distribute beta (float): beta parameter of beta distribute """ super(Mixup, self).__init__() self.alpha = alpha self.beta = beta if self.alpha <= 0.0: raise ValueError("alpha shold be positive in {}".format(self)) if self.beta <= 0.0: raise ValueError("beta shold be positive in {}".format(self)) def apply_image(self, img1, img2, factor): h = max(img1.shape[0], img2.shape[0]) w = max(img1.shape[1], img2.shape[1]) img = np.zeros((h, w, img1.shape[2]), 'float32') img[:img1.shape[0], :img1.shape[1], :] = \ img1.astype('float32') * factor img[:img2.shape[0], :img2.shape[1], :] += \ img2.astype('float32') * (1.0 - factor) return img.astype('uint8') def __call__(self, sample, context=None): if not isinstance(sample, Sequence): return sample assert len(sample) == 2, 'mixup need two samples' factor = np.random.beta(self.alpha, self.beta) factor = max(0.0, min(1.0, factor)) if factor >= 1.0: return sample[0] if factor <= 0.0: return sample[1] im = self.apply_image(sample[0]['image'], sample[1]['image'], factor) result = copy.deepcopy(sample[0]) result['image'] = im # apply bbox and score if 'gt_bbox' in sample[0]: gt_bbox1 = sample[0]['gt_bbox'] gt_bbox2 = sample[1]['gt_bbox'] gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0) result['gt_bbox'] = gt_bbox if 'gt_class' in sample[0]: gt_class1 = sample[0]['gt_class'] gt_class2 = sample[1]['gt_class'] gt_class = np.concatenate((gt_class1, gt_class2), axis=0) result['gt_class'] = gt_class gt_score1 = np.ones_like(sample[0]['gt_class']) gt_score2 = np.ones_like(sample[1]['gt_class']) gt_score = np.concatenate( (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0) result['gt_score'] = gt_score.astype('float32') if 'is_crowd' in sample[0]: is_crowd1 = sample[0]['is_crowd'] is_crowd2 = sample[1]['is_crowd'] is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0) result['is_crowd'] = is_crowd if 'difficult' in sample[0]: is_difficult1 = sample[0]['difficult'] is_difficult2 = sample[1]['difficult'] is_difficult = np.concatenate( (is_difficult1, is_difficult2), axis=0) result['difficult'] = is_difficult if 'gt_ide' in sample[0]: gt_ide1 = sample[0]['gt_ide'] gt_ide2 = sample[1]['gt_ide'] gt_ide = np.concatenate((gt_ide1, gt_ide2), axis=0) result['gt_ide'] = gt_ide return result @register_op class NormalizeBox(BaseOperator): """Transform the bounding box's coornidates to [0,1].""" def __init__(self): super(NormalizeBox, self).__init__() def apply(self, sample, context): im = sample['image'] gt_bbox = sample['gt_bbox'] height, width, _ = im.shape for i in range(gt_bbox.shape[0]): gt_bbox[i][0] = gt_bbox[i][0] / width gt_bbox[i][1] = gt_bbox[i][1] / height gt_bbox[i][2] = gt_bbox[i][2] / width gt_bbox[i][3] = gt_bbox[i][3] / height sample['gt_bbox'] = gt_bbox if 'gt_keypoint' in sample.keys(): gt_keypoint = sample['gt_keypoint'] for i in range(gt_keypoint.shape[1]): if i % 2: gt_keypoint[:, i] = gt_keypoint[:, i] / height else: gt_keypoint[:, i] = gt_keypoint[:, i] / width sample['gt_keypoint'] = gt_keypoint return sample @register_op class BboxXYXY2XYWH(BaseOperator): """ Convert bbox XYXY format to XYWH format. """ def __init__(self): super(BboxXYXY2XYWH, self).__init__() def apply(self, sample, context=None): assert 'gt_bbox' in sample bbox = sample['gt_bbox'] bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2] bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2. sample['gt_bbox'] = bbox return sample @register_op class PadBox(BaseOperator): def __init__(self, num_max_boxes=50): """ Pad zeros to bboxes if number of bboxes is less than num_max_boxes. Args: num_max_boxes (int): the max number of bboxes """ self.num_max_boxes = num_max_boxes super(PadBox, self).__init__() def apply(self, sample, context=None): assert 'gt_bbox' in sample bbox = sample['gt_bbox'] gt_num = min(self.num_max_boxes, len(bbox)) num_max = self.num_max_boxes # fields = context['fields'] if context else [] pad_bbox = np.zeros((num_max, 4), dtype=np.float32) if gt_num > 0: pad_bbox[:gt_num, :] = bbox[:gt_num, :] sample['gt_bbox'] = pad_bbox if 'gt_class' in sample: pad_class = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_class[:gt_num] = sample['gt_class'][:gt_num, 0] sample['gt_class'] = pad_class if 'gt_score' in sample: pad_score = np.zeros((num_max, ), dtype=np.float32) if gt_num > 0: pad_score[:gt_num] = sample['gt_score'][:gt_num, 0] sample['gt_score'] = pad_score # in training, for example in op ExpandImage, # the bbox and gt_class is expandded, but the difficult is not, # so, judging by it's length if 'difficult' in sample: pad_diff = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_diff[:gt_num] = sample['difficult'][:gt_num, 0] sample['difficult'] = pad_diff if 'is_crowd' in sample: pad_crowd = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0] sample['is_crowd'] = pad_crowd if 'gt_ide' in sample: pad_ide = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_ide[:gt_num] = sample['gt_ide'][:gt_num, 0] sample['gt_ide'] = pad_ide return sample @register_op class DebugVisibleImage(BaseOperator): """ In debug mode, visualize images according to `gt_box`. (Currently only supported when not cropping and flipping image.) """ def __init__(self, output_dir='output/debug', is_normalized=False): super(DebugVisibleImage, self).__init__() self.is_normalized = is_normalized self.output_dir = output_dir if not os.path.isdir(output_dir): os.makedirs(output_dir) if not isinstance(self.is_normalized, bool): raise TypeError("{}: input type is invalid.".format(self)) def apply(self, sample, context=None): image = Image.fromarray(sample['image'].astype(np.uint8)) out_file_name = '{:012d}.jpg'.format(sample['im_id'][0]) width = sample['w'] height = sample['h'] gt_bbox = sample['gt_bbox'] gt_class = sample['gt_class'] draw = ImageDraw.Draw(image) for i in range(gt_bbox.shape[0]): if self.is_normalized: gt_bbox[i][0] = gt_bbox[i][0] * width gt_bbox[i][1] = gt_bbox[i][1] * height gt_bbox[i][2] = gt_bbox[i][2] * width gt_bbox[i][3] = gt_bbox[i][3] * height xmin, ymin, xmax, ymax = gt_bbox[i] draw.line( [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin)], width=2, fill='green') # draw label text = str(gt_class[i][0]) tw, th = draw.textsize(text) draw.rectangle( [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill='green') draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255)) if 'gt_keypoint' in sample.keys(): gt_keypoint = sample['gt_keypoint'] if self.is_normalized: for i in range(gt_keypoint.shape[1]): if i % 2: gt_keypoint[:, i] = gt_keypoint[:, i] * height else: gt_keypoint[:, i] = gt_keypoint[:, i] * width for i in range(gt_keypoint.shape[0]): keypoint = gt_keypoint[i] for j in range(int(keypoint.shape[0] / 2)): x1 = round(keypoint[2 * j]).astype(np.int32) y1 = round(keypoint[2 * j + 1]).astype(np.int32) draw.ellipse( (x1, y1, x1 + 5, y1 + 5), fill='green', outline='green') save_path = os.path.join(self.output_dir, out_file_name) image.save(save_path, quality=95) return sample @register_op class Pad(BaseOperator): def __init__(self, size=None, size_divisor=32, pad_mode=0, offsets=None, fill_value=(127.5, 127.5, 127.5)): """ Pad image to a specified size or multiple of size_divisor. Args: size (int, Sequence): image target size, if None, pad to multiple of size_divisor, default None size_divisor (int): size divisor, default 32 pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1 fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5) """ super(Pad, self).__init__() if not isinstance(size, (int, Sequence)): raise TypeError( "Type of target_size is invalid when random_size is True. \ Must be List, now is {}".format(type(size))) if isinstance(size, int): size = [size, size] assert pad_mode in [ -1, 0, 1, 2 ], 'currently only supports four modes [-1, 0, 1, 2]' if pad_mode == -1: assert offsets, 'if pad_mode is -1, offsets should not be None' self.size = size self.size_divisor = size_divisor self.pad_mode = pad_mode self.fill_value = fill_value self.offsets = offsets def apply_segm(self, segms, offsets, im_size, size): def _expand_poly(poly, x, y): expanded_poly = np.array(poly) expanded_poly[0::2] += x expanded_poly[1::2] += y return expanded_poly.tolist() def _expand_rle(rle, x, y, height, width, h, w): if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, height, width) mask = mask_util.decode(rle) expanded_mask = np.full((h, w), 0).astype(mask.dtype) expanded_mask[y:y + height, x:x + width] = mask rle = mask_util.encode( np.array( expanded_mask, order='F', dtype=np.uint8)) return rle x, y = offsets height, width = im_size h, w = size expanded_segms = [] for segm in segms: if is_poly(segm): # Polygon format expanded_segms.append( [_expand_poly(poly, x, y) for poly in segm]) else: # RLE format import pycocotools.mask as mask_util expanded_segms.append( _expand_rle(segm, x, y, height, width, h, w)) return expanded_segms def apply_bbox(self, bbox, offsets): return bbox + np.array(offsets * 2, dtype=np.float32) def apply_keypoint(self, keypoints, offsets): n = len(keypoints[0]) // 2 return keypoints + np.array(offsets * n, dtype=np.float32) def apply_image(self, image, offsets, im_size, size): x, y = offsets im_h, im_w = im_size h, w = size canvas = np.ones((h, w, 3), dtype=np.float32) canvas *= np.array(self.fill_value, dtype=np.float32) canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32) return canvas def apply(self, sample, context=None): im = sample['image'] im_h, im_w = im.shape[:2] if self.size: h, w = self.size assert ( im_h <= h and im_w <= w ), '(h, w) of target size should be greater than (im_h, im_w)' else: h = int(np.ceil(im_h / self.size_divisor) * self.size_divisor) w = int(np.ceil(im_w / self.size_divisor) * self.size_divisor) if h == im_h and w == im_w: sample['image'] = im.astype(np.float32) return sample if self.pad_mode == -1: offset_x, offset_y = self.offsets elif self.pad_mode == 0: offset_y, offset_x = 0, 0 elif self.pad_mode == 1: offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2 else: offset_y, offset_x = h - im_h, w - im_w offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w] sample['image'] = self.apply_image(im, offsets, im_size, size) if self.pad_mode == 0: return sample if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets) if 'gt_poly' in sample and len(sample['gt_poly']) > 0: sample['gt_poly'] = self.apply_segm(sample['gt_poly'], offsets, im_size, size) if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0: sample['gt_keypoint'] = self.apply_keypoint(sample['gt_keypoint'], offsets) return sample @register_op class Poly2Mask(BaseOperator): """ gt poly to mask annotations. Args: del_poly (bool): Whether to delete poly after generating mask. Default: False. """ def __init__(self, del_poly=False): super(Poly2Mask, self).__init__() import pycocotools.mask as maskUtils self.maskutils = maskUtils self.del_poly = del_poly def _poly2mask(self, mask_ann, img_h, img_w): if isinstance(mask_ann, list): # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = self.maskutils.frPyObjects(mask_ann, img_h, img_w) rle = self.maskutils.merge(rles) elif isinstance(mask_ann['counts'], list): # uncompressed RLE rle = self.maskutils.frPyObjects(mask_ann, img_h, img_w) else: # rle rle = mask_ann mask = self.maskutils.decode(rle) return mask def apply(self, sample, context=None): assert 'gt_poly' in sample im_h, im_w = sample['im_shape'] masks = [ self._poly2mask(gt_poly, im_h, im_w) for gt_poly in sample['gt_poly'] ] sample['gt_segm'] = np.asarray(masks).astype(np.uint8) if self.del_poly: del (sample['gt_poly']) return sample @register_op class AugmentHSV(BaseOperator): """ Augment the SV channel of image data. Args: fraction (float): the fraction for augment. Default: 0.5. is_bgr (bool): whether the image is BGR mode. Default: True. hgain (float): H channel gains sgain (float): S channel gains vgain (float): V channel gains """ def __init__(self, fraction=0.50, is_bgr=True, hgain=None, sgain=None, vgain=None): super(AugmentHSV, self).__init__() self.fraction = fraction self.is_bgr = is_bgr self.hgain = hgain self.sgain = sgain self.vgain = vgain self.use_hsvgain = False if hgain is None else True def apply(self, sample, context=None): img = sample['image'] if self.is_bgr: img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) else: img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) if self.use_hsvgain: hsv_augs = np.random.uniform( -1, 1, 3) * [self.hgain, self.sgain, self.vgain] # random selection of h, s, v hsv_augs *= np.random.randint(0, 2, 3) img_hsv[..., 0] = (img_hsv[..., 0] + hsv_augs[0]) % 180 img_hsv[..., 1] = np.clip(img_hsv[..., 1] + hsv_augs[1], 0, 255) img_hsv[..., 2] = np.clip(img_hsv[..., 2] + hsv_augs[2], 0, 255) else: S = img_hsv[:, :, 1].astype(np.float32) V = img_hsv[:, :, 2].astype(np.float32) a = (random.random() * 2 - 1) * self.fraction + 1 S *= a if a > 1: np.clip(S, a_min=0, a_max=255, out=S) a = (random.random() * 2 - 1) * self.fraction + 1 V *= a if a > 1: np.clip(V, a_min=0, a_max=255, out=V) img_hsv[:, :, 1] = S.astype(np.uint8) img_hsv[:, :, 2] = V.astype(np.uint8) if self.is_bgr: cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) else: cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB, dst=img) sample['image'] = img.astype(np.float32) return sample @register_op class Norm2PixelBbox(BaseOperator): """ Transform the bounding box's coornidates which is in [0,1] to pixels. """ def __init__(self): super(Norm2PixelBbox, self).__init__() def apply(self, sample, context=None): assert 'gt_bbox' in sample bbox = sample['gt_bbox'] height, width = sample['image'].shape[:2] bbox[:, 0::2] = bbox[:, 0::2] * width bbox[:, 1::2] = bbox[:, 1::2] * height sample['gt_bbox'] = bbox return sample @register_op class BboxCXCYWH2XYXY(BaseOperator): """ Convert bbox CXCYWH format to XYXY format. [center_x, center_y, width, height] -> [x0, y0, x1, y1] """ def __init__(self): super(BboxCXCYWH2XYXY, self).__init__() def apply(self, sample, context=None): assert 'gt_bbox' in sample bbox0 = sample['gt_bbox'] bbox = bbox0.copy() bbox[:, :2] = bbox0[:, :2] - bbox0[:, 2:4] / 2. bbox[:, 2:4] = bbox0[:, :2] + bbox0[:, 2:4] / 2. sample['gt_bbox'] = bbox return sample @register_op class RandomResizeCrop(BaseOperator): """Random resize and crop image and bboxes. Args: resizes (list): resize image to one of resizes. if keep_ratio is True and mode is 'long', resize the image's long side to the maximum of target_size, if keep_ratio is True and mode is 'short', resize the image's short side to the minimum of target_size. cropsizes (list): crop sizes after resize, [(min_crop_1, max_crop_1), ...] mode (str): resize mode, `long` or `short`. Details see resizes. prob (float): probability of this op. keep_ratio (bool): whether keep_ratio or not, default true interp (int): the interpolation method thresholds (list): iou thresholds for decide a valid bbox crop. num_attempts (int): number of tries before giving up. allow_no_crop (bool): allow return without actually cropping them. cover_all_box (bool): ensure all bboxes are covered in the final crop. is_mask_crop(bool): whether crop the segmentation. """ def __init__(self, resizes, cropsizes, prob=0.5, mode='short', keep_ratio=True, interp=cv2.INTER_LINEAR, num_attempts=3, cover_all_box=False, allow_no_crop=False, thresholds=[0.3, 0.5, 0.7], is_mask_crop=False, ioumode="iou"): super(RandomResizeCrop, self).__init__() self.resizes = resizes self.cropsizes = cropsizes self.prob = prob self.mode = mode self.ioumode = ioumode self.resizer = Resize(0, keep_ratio=keep_ratio, interp=interp) self.croper = RandomCrop( num_attempts=num_attempts, cover_all_box=cover_all_box, thresholds=thresholds, allow_no_crop=allow_no_crop, is_mask_crop=is_mask_crop) def _format_size(self, size): if isinstance(size, Integral): size = (size, size) return size def apply(self, sample, context=None): if random.random() < self.prob: _resize = self._format_size(random.choice(self.resizes)) _cropsize = self._format_size(random.choice(self.cropsizes)) sample = self._resize( self.resizer, sample, size=_resize, mode=self.mode, context=context) sample = self._random_crop( self.croper, sample, size=_cropsize, context=context) return sample @staticmethod def _random_crop(croper, sample, size, context=None): if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0: return sample self = croper h, w = sample['image'].shape[:2] gt_bbox = sample['gt_bbox'] cropsize = size min_crop = min(cropsize) max_crop = max(cropsize) thresholds = list(self.thresholds) np.random.shuffle(thresholds) for thresh in thresholds: found = False for _ in range(self.num_attempts): crop_h = random.randint(min_crop, min(h, max_crop)) crop_w = random.randint(min_crop, min(w, max_crop)) crop_y = random.randint(0, h - crop_h) crop_x = random.randint(0, w - crop_w) crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h] if self.ioumode == "iof": iou = self._gtcropiou_matrix( gt_bbox, np.array( [crop_box], dtype=np.float32)) elif self.ioumode == "iou": iou = self._iou_matrix( gt_bbox, np.array( [crop_box], dtype=np.float32)) if iou.max() < thresh: continue if self.cover_all_box and iou.min() < thresh: continue cropped_box, valid_ids = self._crop_box_with_center_constraint( gt_bbox, np.array( crop_box, dtype=np.float32)) if valid_ids.size > 0: found = True break if found: if self.is_mask_crop and 'gt_poly' in sample and len(sample[ 'gt_poly']) > 0: crop_polys = self.crop_segms( sample['gt_poly'], valid_ids, np.array( crop_box, dtype=np.int64), h, w) if [] in crop_polys: delete_id = list() valid_polys = list() for id, crop_poly in enumerate(crop_polys): if crop_poly == []: delete_id.append(id) else: valid_polys.append(crop_poly) valid_ids = np.delete(valid_ids, delete_id) if len(valid_polys) == 0: return sample sample['gt_poly'] = valid_polys else: sample['gt_poly'] = crop_polys if 'gt_segm' in sample: sample['gt_segm'] = self._crop_segm(sample['gt_segm'], crop_box) sample['gt_segm'] = np.take( sample['gt_segm'], valid_ids, axis=0) sample['image'] = self._crop_image(sample['image'], crop_box) sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0) sample['gt_class'] = np.take( sample['gt_class'], valid_ids, axis=0) if 'gt_score' in sample: sample['gt_score'] = np.take( sample['gt_score'], valid_ids, axis=0) if 'is_crowd' in sample: sample['is_crowd'] = np.take( sample['is_crowd'], valid_ids, axis=0) if 'gt_areas' in sample: sample['gt_areas'] = np.take( sample['gt_areas'], valid_ids, axis=0) if 'gt_joints' in sample: gt_joints = self._crop_joints(sample['gt_joints'], crop_box) sample['gt_joints'] = gt_joints[valid_ids] return sample return sample @staticmethod def _resize(resizer, sample, size, mode='short', context=None): self = resizer im = sample['image'] target_size = size if not isinstance(im, np.ndarray): raise TypeError("{}: image type is not numpy.".format(self)) if len(im.shape) != 3: raise ImageError('{}: image is not 3-dimensional.'.format(self)) # apply image im_shape = im.shape if self.keep_ratio: im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) target_size_min = np.min(target_size) target_size_max = np.max(target_size) if mode == 'long': im_scale = min(target_size_min / im_size_min, target_size_max / im_size_max) else: im_scale = max(target_size_min / im_size_min, target_size_max / im_size_max) resize_h = int(im_scale * float(im_shape[0]) + 0.5) resize_w = int(im_scale * float(im_shape[1]) + 0.5) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = target_size im_scale_y = resize_h / im_shape[0] im_scale_x = resize_w / im_shape[1] im = self.apply_image(sample['image'], [im_scale_x, im_scale_y]) sample['image'] = im sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32) if 'scale_factor' in sample: scale_factor = sample['scale_factor'] sample['scale_factor'] = np.asarray( [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x], dtype=np.float32) else: sample['scale_factor'] = np.asarray( [im_scale_y, im_scale_x], dtype=np.float32) # apply bbox if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], [im_scale_x, im_scale_y], [resize_w, resize_h]) # apply polygon if 'gt_poly' in sample and len(sample['gt_poly']) > 0: sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_shape[:2], [im_scale_x, im_scale_y]) # apply semantic if 'semantic' in sample and sample['semantic']: semantic = sample['semantic'] semantic = cv2.resize( semantic.astype('float32'), None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) semantic = np.asarray(semantic).astype('int32') semantic = np.expand_dims(semantic, 0) sample['semantic'] = semantic # apply gt_segm if 'gt_segm' in sample and len(sample['gt_segm']) > 0: masks = [ cv2.resize( gt_segm, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=cv2.INTER_NEAREST) for gt_segm in sample['gt_segm'] ] sample['gt_segm'] = np.asarray(masks).astype(np.uint8) if 'gt_joints' in sample: sample['gt_joints'] = self.apply_joints(sample['gt_joints'], [im_scale_x, im_scale_y], [resize_w, resize_h]) return sample @register_op class RandomSelect(BaseOperator): """ Randomly choose a transformation between transforms1 and transforms2, and the probability of choosing transforms1 is p. The code is based on https://github.com/facebookresearch/detr/blob/main/datasets/transforms.py """ def __init__(self, transforms1, transforms2, p=0.5): super(RandomSelect, self).__init__() self.transforms1 = Compose(transforms1) self.transforms2 = Compose(transforms2) self.p = p def apply(self, sample, context=None): if random.random() < self.p: return self.transforms1(sample) return self.transforms2(sample) @register_op class RandomShortSideResize(BaseOperator): def __init__(self, short_side_sizes, max_size=None, interp=cv2.INTER_LINEAR, random_interp=False): """ Resize the image randomly according to the short side. If max_size is not None, the long side is scaled according to max_size. The whole process will be keep ratio. Args: short_side_sizes (list|tuple): Image target short side size. max_size (int): The size of the longest side of image after resize. interp (int): The interpolation method. random_interp (bool): Whether random select interpolation method. """ super(RandomShortSideResize, self).__init__() assert isinstance(short_side_sizes, Sequence), "short_side_sizes must be List or Tuple" self.short_side_sizes = short_side_sizes self.max_size = max_size self.interp = interp self.random_interp = random_interp self.interps = [ cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4, ] def get_size_with_aspect_ratio(self, image_shape, size, max_size=None): h, w = image_shape max_clip = False if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(max_size * min_original_size / max_original_size) max_clip = True if (w <= h and w == size) or (h <= w and h == size): return (w, h) if w < h: ow = size oh = int(round(size * h / w)) if not max_clip else max_size else: oh = size ow = int(round(size * w / h)) if not max_clip else max_size return (ow, oh) def resize(self, sample, target_size, max_size=None, interp=cv2.INTER_LINEAR): im = sample['image'] if not isinstance(im, np.ndarray): raise TypeError("{}: image type is not numpy.".format(self)) if len(im.shape) != 3: raise ImageError('{}: image is not 3-dimensional.'.format(self)) target_size = self.get_size_with_aspect_ratio(im.shape[:2], target_size, max_size) im_scale_y, im_scale_x = target_size[1] / im.shape[0], target_size[ 0] / im.shape[1] sample['image'] = cv2.resize(im, target_size, interpolation=interp) sample['im_shape'] = np.asarray(target_size[::-1], dtype=np.float32) if 'scale_factor' in sample: scale_factor = sample['scale_factor'] sample['scale_factor'] = np.asarray( [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x], dtype=np.float32) else: sample['scale_factor'] = np.asarray( [im_scale_y, im_scale_x], dtype=np.float32) # apply bbox if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'] = self.apply_bbox( sample['gt_bbox'], [im_scale_x, im_scale_y], target_size) # apply polygon if 'gt_poly' in sample and len(sample['gt_poly']) > 0: sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im.shape[:2], [im_scale_x, im_scale_y]) # apply semantic if 'semantic' in sample and sample['semantic']: semantic = sample['semantic'] semantic = cv2.resize( semantic.astype('float32'), target_size, interpolation=self.interp) semantic = np.asarray(semantic).astype('int32') semantic = np.expand_dims(semantic, 0) sample['semantic'] = semantic # apply gt_segm if 'gt_segm' in sample and len(sample['gt_segm']) > 0: masks = [ cv2.resize( gt_segm, target_size, interpolation=cv2.INTER_NEAREST) for gt_segm in sample['gt_segm'] ] sample['gt_segm'] = np.asarray(masks).astype(np.uint8) if 'gt_joints' in sample: sample['gt_joints'] = self.apply_joints( sample['gt_joints'], [im_scale_x, im_scale_y], target_size) # apply areas if 'gt_areas' in sample: sample['gt_areas'] = self.apply_area(sample['gt_areas'], [im_scale_x, im_scale_y]) return sample def apply_bbox(self, bbox, scale, size): im_scale_x, im_scale_y = scale resize_w, resize_h = size bbox[:, 0::2] *= im_scale_x bbox[:, 1::2] *= im_scale_y bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w) bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h) return bbox.astype('float32') def apply_joints(self, joints, scale, size): im_scale_x, im_scale_y = scale resize_w, resize_h = size joints[..., 0] *= im_scale_x joints[..., 1] *= im_scale_y # joints[joints[..., 0] >= resize_w, :] = 0 # joints[joints[..., 1] >= resize_h, :] = 0 # joints[joints[..., 0] < 0, :] = 0 # joints[joints[..., 1] < 0, :] = 0 joints[..., 0] = np.clip(joints[..., 0], 0, resize_w) joints[..., 1] = np.clip(joints[..., 1], 0, resize_h) return joints def apply_area(self, area, scale): im_scale_x, im_scale_y = scale return area * im_scale_x * im_scale_y def apply_segm(self, segms, im_size, scale): def _resize_poly(poly, im_scale_x, im_scale_y): resized_poly = np.array(poly).astype('float32') resized_poly[0::2] *= im_scale_x resized_poly[1::2] *= im_scale_y return resized_poly.tolist() def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y): if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, im_h, im_w) mask = mask_util.decode(rle) mask = cv2.resize( mask, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8)) return rle im_h, im_w = im_size im_scale_x, im_scale_y = scale resized_segms = [] for segm in segms: if is_poly(segm): # Polygon format resized_segms.append([ _resize_poly(poly, im_scale_x, im_scale_y) for poly in segm ]) else: # RLE format import pycocotools.mask as mask_util resized_segms.append( _resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y)) return resized_segms def apply(self, sample, context=None): target_size = random.choice(self.short_side_sizes) interp = random.choice( self.interps) if self.random_interp else self.interp return self.resize(sample, target_size, self.max_size, interp) @register_op class RandomShortSideRangeResize(RandomShortSideResize): def __init__(self, scales, interp=cv2.INTER_LINEAR, random_interp=False): """ Resize the image randomly according to the short side. If max_size is not None, the long side is scaled according to max_size. The whole process will be keep ratio. Args: short_side_sizes (list|tuple): Image target short side size. interp (int): The interpolation method. random_interp (bool): Whether random select interpolation method. """ super(RandomShortSideRangeResize, self).__init__(scales, None, interp, random_interp) assert isinstance(scales, Sequence), "short_side_sizes must be List or Tuple" self.scales = scales def random_sample(self, img_scales): img_scale_long = [max(s) for s in img_scales] img_scale_short = [min(s) for s in img_scales] long_edge = np.random.randint( min(img_scale_long), max(img_scale_long) + 1) short_edge = np.random.randint( min(img_scale_short), max(img_scale_short) + 1) img_scale = (long_edge, short_edge) return img_scale def apply(self, sample, context=None): long_edge, short_edge = self.random_sample(self.short_side_sizes) # print("target size:{}".format((long_edge, short_edge))) interp = random.choice( self.interps) if self.random_interp else self.interp return self.resize(sample, short_edge, long_edge, interp) @register_op class RandomSizeCrop(BaseOperator): """ Cut the image randomly according to `min_size` and `max_size` Args: min_size (int): Min size for edges of cropped image. max_size (int): Max size for edges of cropped image. If it is set to larger than length of the input image, the output will keep the origin length. keep_empty (bool): Whether to keep the cropped result with no object. If it is set to False, the no-object result will not be returned, replaced by the original input. """ def __init__(self, min_size, max_size, keep_empty=True): super(RandomSizeCrop, self).__init__() self.min_size = min_size self.max_size = max_size self.keep_empty = keep_empty from paddle.vision.transforms.functional import crop as paddle_crop self.paddle_crop = paddle_crop @staticmethod def get_crop_params(img_shape, output_size): """Get parameters for ``crop`` for a random crop. Args: img_shape (list|tuple): Image's height and width. output_size (list|tuple): Expected output size of the crop. Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for random crop. """ h, w = img_shape th, tw = output_size if h + 1 < th or w + 1 < tw: raise ValueError( "Required crop size {} is larger then input image size {}". format((th, tw), (h, w))) if w == tw and h == th: return 0, 0, h, w i = random.randint(0, h - th + 1) j = random.randint(0, w - tw + 1) return i, j, th, tw def crop(self, sample, region): keep_index = None # apply bbox and check whether the cropped result is valid if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: croped_bbox = self.apply_bbox(sample['gt_bbox'], region) bbox = croped_bbox.reshape([-1, 2, 2]) area = (bbox[:, 1, :] - bbox[:, 0, :]).prod(axis=1) keep_index = np.where(area > 0)[0] if not self.keep_empty and len(keep_index) == 0: # When keep_empty is set to False, cropped with no-object will # not be used and return the origin content. return sample sample['gt_bbox'] = croped_bbox[keep_index] if len( keep_index) > 0 else np.zeros( [0, 4], dtype=np.float32) sample['gt_class'] = sample['gt_class'][keep_index] if len( keep_index) > 0 else np.zeros( [0, 1], dtype=np.float32) if 'gt_score' in sample: sample['gt_score'] = sample['gt_score'][keep_index] if len( keep_index) > 0 else np.zeros( [0, 1], dtype=np.float32) if 'is_crowd' in sample: sample['is_crowd'] = sample['is_crowd'][keep_index] if len( keep_index) > 0 else np.zeros( [0, 1], dtype=np.float32) if 'gt_areas' in sample: sample['gt_areas'] = np.take( sample['gt_areas'], keep_index, axis=0) image_shape = sample['image'].shape[:2] sample['image'] = self.paddle_crop(sample['image'], *region) sample['im_shape'] = np.array( sample['image'].shape[:2], dtype=np.float32) # apply polygon if 'gt_poly' in sample and len(sample['gt_poly']) > 0: sample['gt_poly'] = self.apply_segm(sample['gt_poly'], region, image_shape) sample['gt_poly'] = np.array(sample['gt_poly']) if keep_index is not None and len(keep_index) > 0: sample['gt_poly'] = sample['gt_poly'][keep_index] sample['gt_poly'] = sample['gt_poly'].tolist() # apply gt_segm if 'gt_segm' in sample and len(sample['gt_segm']) > 0: i, j, h, w = region sample['gt_segm'] = sample['gt_segm'][:, i:i + h, j:j + w] if keep_index is not None and len(keep_index) > 0: sample['gt_segm'] = sample['gt_segm'][keep_index] if 'gt_joints' in sample: gt_joints = self._crop_joints(sample['gt_joints'], region) sample['gt_joints'] = gt_joints if keep_index is not None: sample['gt_joints'] = sample['gt_joints'][keep_index] return sample def apply_bbox(self, bbox, region): i, j, h, w = region region_size = np.asarray([w, h]) crop_bbox = bbox - np.asarray([j, i, j, i]) crop_bbox = np.minimum(crop_bbox.reshape([-1, 2, 2]), region_size) crop_bbox = crop_bbox.clip(min=0) return crop_bbox.reshape([-1, 4]).astype('float32') def _crop_joints(self, joints, region): y1, x1, h, w = region x2 = x1 + w y2 = y1 + h # x1, y1, x2, y2 = crop joints[..., 0] -= x1 joints[..., 1] -= y1 joints[joints[..., 0] > w, :] = 0 joints[joints[..., 1] > h, :] = 0 joints[joints[..., 0] < 0, :] = 0 joints[joints[..., 1] < 0, :] = 0 return joints def apply_segm(self, segms, region, image_shape): def _crop_poly(segm, crop): xmin, ymin, xmax, ymax = crop crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin] crop_p = np.array(crop_coord).reshape(4, 2) crop_p = Polygon(crop_p) crop_segm = list() for poly in segm: poly = np.array(poly).reshape(len(poly) // 2, 2) polygon = Polygon(poly) if not polygon.is_valid: exterior = polygon.exterior multi_lines = exterior.intersection(exterior) polygons = shapely.ops.polygonize(multi_lines) polygon = MultiPolygon(polygons) multi_polygon = list() if isinstance(polygon, MultiPolygon): multi_polygon = copy.deepcopy(polygon) else: multi_polygon.append(copy.deepcopy(polygon)) for per_polygon in multi_polygon: inter = per_polygon.intersection(crop_p) if not inter: continue if isinstance(inter, (MultiPolygon, GeometryCollection)): for part in inter: if not isinstance(part, Polygon): continue part = np.squeeze( np.array(part.exterior.coords[:-1]).reshape(1, -1)) part[0::2] -= xmin part[1::2] -= ymin crop_segm.append(part.tolist()) elif isinstance(inter, Polygon): crop_poly = np.squeeze( np.array(inter.exterior.coords[:-1]).reshape(1, -1)) crop_poly[0::2] -= xmin crop_poly[1::2] -= ymin crop_segm.append(crop_poly.tolist()) else: continue return crop_segm def _crop_rle(rle, crop, height, width): if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, height, width) mask = mask_util.decode(rle) mask = mask[crop[1]:crop[3], crop[0]:crop[2]] rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8)) return rle i, j, h, w = region crop = [j, i, j + w, i + h] height, width = image_shape crop_segms = [] for segm in segms: if is_poly(segm): import copy import shapely.ops from shapely.geometry import Polygon, MultiPolygon, GeometryCollection # Polygon format crop_segms.append(_crop_poly(segm, crop)) else: # RLE format import pycocotools.mask as mask_util crop_segms.append(_crop_rle(segm, crop, height, width)) return crop_segms def apply(self, sample, context=None): h = random.randint(self.min_size, min(sample['image'].shape[0], self.max_size)) w = random.randint(self.min_size, min(sample['image'].shape[1], self.max_size)) region = self.get_crop_params(sample['image'].shape[:2], [h, w]) return self.crop(sample, region) @register_op class WarpAffine(BaseOperator): def __init__(self, keep_res=False, pad=31, input_h=512, input_w=512, scale=0.4, shift=0.1, down_ratio=4): """WarpAffine Warp affine the image The code is based on https://github.com/xingyizhou/CenterNet/blob/master/src/lib/datasets/sample/ctdet.py """ super(WarpAffine, self).__init__() self.keep_res = keep_res self.pad = pad self.input_h = input_h self.input_w = input_w self.scale = scale self.shift = shift self.down_ratio = down_ratio def apply(self, sample, context=None): img = sample['image'] img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) h, w = img.shape[:2] if self.keep_res: # True in detection eval/infer input_h = (h | self.pad) + 1 input_w = (w | self.pad) + 1 s = np.array([input_w, input_h], dtype=np.float32) c = np.array([w // 2, h // 2], dtype=np.float32) else: # False in centertrack eval_mot/eval_mot s = max(h, w) * 1.0 input_h, input_w = self.input_h, self.input_w c = np.array([w / 2., h / 2.], dtype=np.float32) trans_input = get_affine_transform(c, s, 0, [input_w, input_h]) img = cv2.resize(img, (w, h)) inp = cv2.warpAffine( img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR) sample['image'] = inp if not self.keep_res: out_h = input_h // self.down_ratio out_w = input_w // self.down_ratio trans_output = get_affine_transform(c, s, 0, [out_w, out_h]) sample.update({ 'center': c, 'scale': s, 'out_height': out_h, 'out_width': out_w, 'inp_height': input_h, 'inp_width': input_w, 'trans_input': trans_input, 'trans_output': trans_output, }) return sample @register_op class FlipWarpAffine(BaseOperator): def __init__(self, keep_res=False, pad=31, input_h=512, input_w=512, not_rand_crop=False, scale=0.4, shift=0.1, flip=0.5, is_scale=True, use_random=True, add_pre_img=False): """FlipWarpAffine 1. Random Crop 2. Flip the image horizontal 3. Warp affine the image 4. (Optinal) Add previous image """ super(FlipWarpAffine, self).__init__() self.keep_res = keep_res self.pad = pad self.input_h = input_h self.input_w = input_w self.not_rand_crop = not_rand_crop self.scale = scale self.shift = shift self.flip = flip self.is_scale = is_scale self.use_random = use_random self.add_pre_img = add_pre_img def __call__(self, samples, context=None): if self.add_pre_img: assert isinstance(samples, Sequence) and len(samples) == 2 sample, pre_sample = samples[0], samples[1] else: sample = samples img = sample['image'] img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0: return sample h, w = img.shape[:2] flipped = 0 if self.keep_res: input_h = (h | self.pad) + 1 input_w = (w | self.pad) + 1 s = np.array([input_w, input_h], dtype=np.float32) c = np.array([w // 2, h // 2], dtype=np.float32) else: # centernet training default s = max(h, w) * 1.0 input_h, input_w = self.input_h, self.input_w c = np.array([w / 2., h / 2.], dtype=np.float32) if self.use_random: gt_bbox = sample['gt_bbox'] if not self.not_rand_crop: # centernet default s = s * np.random.choice(np.arange(0.6, 1.4, 0.1)) w_border = get_border(128, w) h_border = get_border(128, h) c[0] = np.random.randint(low=w_border, high=w - w_border) c[1] = np.random.randint(low=h_border, high=h - h_border) else: sf = self.scale cf = self.shift c[0] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf) c[1] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf) s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf) if np.random.random() < self.flip: img = img[:, ::-1, :] c[0] = w - c[0] - 1 oldx1 = gt_bbox[:, 0].copy() oldx2 = gt_bbox[:, 2].copy() gt_bbox[:, 0] = w - oldx2 - 1 gt_bbox[:, 2] = w - oldx1 - 1 flipped = 1 sample['gt_bbox'] = gt_bbox trans_input = get_affine_transform(c, s, 0, [input_w, input_h]) inp = cv2.warpAffine( img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR) if self.is_scale: inp = (inp.astype(np.float32) / 255.) sample['image'] = inp sample['center'] = c sample['scale'] = s if self.add_pre_img: sample['trans_input'] = trans_input # previous image, use same aug trans_input as current image pre_img = pre_sample['image'] pre_img = cv2.cvtColor(pre_img, cv2.COLOR_RGB2BGR) if flipped: pre_img = pre_img[:, ::-1, :].copy() pre_inp = cv2.warpAffine( pre_img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR) if self.is_scale: pre_inp = (pre_inp.astype(np.float32) / 255.) sample['pre_image'] = pre_inp # if empty gt_bbox if 'gt_bbox' in pre_sample and len(pre_sample['gt_bbox']) == 0: return sample pre_gt_bbox = pre_sample['gt_bbox'] if flipped: pre_oldx1 = pre_gt_bbox[:, 0].copy() pre_oldx2 = pre_gt_bbox[:, 2].copy() pre_gt_bbox[:, 0] = w - pre_oldx1 - 1 pre_gt_bbox[:, 2] = w - pre_oldx2 - 1 sample['pre_gt_bbox'] = pre_gt_bbox sample['pre_gt_class'] = pre_sample['gt_class'] sample['pre_gt_track_id'] = pre_sample['gt_track_id'] del pre_sample return sample @register_op class CenterRandColor(BaseOperator): """Random color for CenterNet series models. Args: saturation (float): saturation settings. contrast (float): contrast settings. brightness (float): brightness settings. """ def __init__(self, saturation=0.4, contrast=0.4, brightness=0.4): super(CenterRandColor, self).__init__() self.saturation = saturation self.contrast = contrast self.brightness = brightness def apply_saturation(self, img, img_gray): alpha = 1. + np.random.uniform( low=-self.saturation, high=self.saturation) self._blend(alpha, img, img_gray[:, :, None]) return img def apply_contrast(self, img, img_gray): alpha = 1. + np.random.uniform(low=-self.contrast, high=self.contrast) img_mean = img_gray.mean() self._blend(alpha, img, img_mean) return img def apply_brightness(self, img, img_gray): alpha = 1 + np.random.uniform( low=-self.brightness, high=self.brightness) img *= alpha return img def _blend(self, alpha, img, img_mean): img *= alpha img_mean *= (1 - alpha) img += img_mean def apply(self, sample, context=None): functions = [ self.apply_brightness, self.apply_contrast, self.apply_saturation, ] img = sample['image'] img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) distortions = np.random.permutation(functions) for func in distortions: img = func(img, img_gray) sample['image'] = img if 'pre_image' in sample: pre_img = sample['pre_image'] pre_img_gray = cv2.cvtColor(pre_img, cv2.COLOR_BGR2GRAY) pre_distortions = np.random.permutation(functions) for func in pre_distortions: pre_img = func(pre_img, pre_img_gray) sample['pre_image'] = pre_img return sample @register_op class Mosaic(BaseOperator): """ Mosaic operator for image and gt_bboxes The code is based on https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/data/datasets/mosaicdetection.py 1. get mosaic coords 2. clip bbox and get mosaic_labels 3. random_affine augment 4. Mixup augment as copypaste (optinal), not used in tiny/nano Args: prob (float): probability of using Mosaic, 1.0 as default input_dim (list[int]): input shape degrees (list[2]): the rotate range to apply, transform range is [min, max] translate (list[2]): the translate range to apply, transform range is [min, max] scale (list[2]): the scale range to apply, transform range is [min, max] shear (list[2]): the shear range to apply, transform range is [min, max] enable_mixup (bool): whether to enable Mixup or not mixup_prob (float): probability of using Mixup, 1.0 as default mixup_scale (list[int]): scale range of Mixup remove_outside_box (bool): whether remove outside boxes, False as default in COCO dataset, True in MOT dataset """ def __init__(self, prob=1.0, input_dim=[640, 640], degrees=[-10, 10], translate=[-0.1, 0.1], scale=[0.1, 2], shear=[-2, 2], enable_mixup=True, mixup_prob=1.0, mixup_scale=[0.5, 1.5], remove_outside_box=False): super(Mosaic, self).__init__() self.prob = prob if isinstance(input_dim, Integral): input_dim = [input_dim, input_dim] self.input_dim = input_dim self.degrees = degrees self.translate = translate self.scale = scale self.shear = shear self.enable_mixup = enable_mixup self.mixup_prob = mixup_prob self.mixup_scale = mixup_scale self.remove_outside_box = remove_outside_box def get_mosaic_coords(self, mosaic_idx, xc, yc, w, h, input_h, input_w): # (x1, y1, x2, y2) means coords in large image, # small_coords means coords in small image in mosaic aug. if mosaic_idx == 0: # top left x1, y1, x2, y2 = max(xc - w, 0), max(yc - h, 0), xc, yc small_coords = w - (x2 - x1), h - (y2 - y1), w, h elif mosaic_idx == 1: # top right x1, y1, x2, y2 = xc, max(yc - h, 0), min(xc + w, input_w * 2), yc small_coords = 0, h - (y2 - y1), min(w, x2 - x1), h elif mosaic_idx == 2: # bottom left x1, y1, x2, y2 = max(xc - w, 0), yc, xc, min(input_h * 2, yc + h) small_coords = w - (x2 - x1), 0, w, min(y2 - y1, h) elif mosaic_idx == 3: # bottom right x1, y1, x2, y2 = xc, yc, min(xc + w, input_w * 2), min(input_h * 2, yc + h) small_coords = 0, 0, min(w, x2 - x1), min(y2 - y1, h) return (x1, y1, x2, y2), small_coords def random_affine_augment(self, img, labels=[], input_dim=[640, 640], degrees=[-10, 10], scales=[0.1, 2], shears=[-2, 2], translates=[-0.1, 0.1]): # random rotation and scale degree = random.uniform(degrees[0], degrees[1]) scale = random.uniform(scales[0], scales[1]) assert scale > 0, "Argument scale should be positive." R = cv2.getRotationMatrix2D(angle=degree, center=(0, 0), scale=scale) M = np.ones([2, 3]) # random shear shear = random.uniform(shears[0], shears[1]) shear_x = math.tan(shear * math.pi / 180) shear_y = math.tan(shear * math.pi / 180) M[0] = R[0] + shear_y * R[1] M[1] = R[1] + shear_x * R[0] # random translation translate = random.uniform(translates[0], translates[1]) translation_x = translate * input_dim[0] translation_y = translate * input_dim[1] M[0, 2] = translation_x M[1, 2] = translation_y # warpAffine img = cv2.warpAffine( img, M, dsize=tuple(input_dim), borderValue=(114, 114, 114)) num_gts = len(labels) if num_gts > 0: # warp corner points corner_points = np.ones((4 * num_gts, 3)) corner_points[:, :2] = labels[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape( 4 * num_gts, 2) # x1y1, x2y2, x1y2, x2y1 # apply affine transform corner_points = corner_points @M.T corner_points = corner_points.reshape(num_gts, 8) # create new boxes corner_xs = corner_points[:, 0::2] corner_ys = corner_points[:, 1::2] new_bboxes = np.concatenate((corner_xs.min(1), corner_ys.min(1), corner_xs.max(1), corner_ys.max(1))) new_bboxes = new_bboxes.reshape(4, num_gts).T # clip boxes new_bboxes[:, 0::2] = np.clip(new_bboxes[:, 0::2], 0, input_dim[0]) new_bboxes[:, 1::2] = np.clip(new_bboxes[:, 1::2], 0, input_dim[1]) labels[:, :4] = new_bboxes return img, labels def __call__(self, sample, context=None): if not isinstance(sample, Sequence): return sample assert len( sample) == 5, "Mosaic needs 5 samples, 4 for mosaic and 1 for mixup." if np.random.uniform(0., 1.) > self.prob: return sample[0] mosaic_gt_bbox, mosaic_gt_class, mosaic_is_crowd, mosaic_difficult = [], [], [], [] input_h, input_w = self.input_dim yc = int(random.uniform(0.5 * input_h, 1.5 * input_h)) xc = int(random.uniform(0.5 * input_w, 1.5 * input_w)) mosaic_img = np.full((input_h * 2, input_w * 2, 3), 114, dtype=np.uint8) # 1. get mosaic coords for mosaic_idx, sp in enumerate(sample[:4]): img = sp['image'] gt_bbox = sp['gt_bbox'] h0, w0 = img.shape[:2] scale = min(1. * input_h / h0, 1. * input_w / w0) img = cv2.resize( img, (int(w0 * scale), int(h0 * scale)), interpolation=cv2.INTER_LINEAR) (h, w, c) = img.shape[:3] # suffix l means large image, while s means small image in mosaic aug. (l_x1, l_y1, l_x2, l_y2), ( s_x1, s_y1, s_x2, s_y2) = self.get_mosaic_coords( mosaic_idx, xc, yc, w, h, input_h, input_w) mosaic_img[l_y1:l_y2, l_x1:l_x2] = img[s_y1:s_y2, s_x1:s_x2] padw, padh = l_x1 - s_x1, l_y1 - s_y1 # Normalized xywh to pixel xyxy format _gt_bbox = gt_bbox.copy() if len(gt_bbox) > 0: _gt_bbox[:, 0] = scale * gt_bbox[:, 0] + padw _gt_bbox[:, 1] = scale * gt_bbox[:, 1] + padh _gt_bbox[:, 2] = scale * gt_bbox[:, 2] + padw _gt_bbox[:, 3] = scale * gt_bbox[:, 3] + padh mosaic_gt_bbox.append(_gt_bbox) mosaic_gt_class.append(sp['gt_class']) if 'is_crowd' in sp: mosaic_is_crowd.append(sp['is_crowd']) if 'difficult' in sp: mosaic_difficult.append(sp['difficult']) # 2. clip bbox and get mosaic_labels([gt_bbox, gt_class, is_crowd]) if len(mosaic_gt_bbox): mosaic_gt_bbox = np.concatenate(mosaic_gt_bbox, 0) mosaic_gt_class = np.concatenate(mosaic_gt_class, 0) if mosaic_is_crowd: mosaic_is_crowd = np.concatenate(mosaic_is_crowd, 0) mosaic_labels = np.concatenate([ mosaic_gt_bbox, mosaic_gt_class.astype(mosaic_gt_bbox.dtype), mosaic_is_crowd.astype(mosaic_gt_bbox.dtype) ], 1) elif mosaic_difficult: mosaic_difficult = np.concatenate(mosaic_difficult, 0) mosaic_labels = np.concatenate([ mosaic_gt_bbox, mosaic_gt_class.astype(mosaic_gt_bbox.dtype), mosaic_difficult.astype(mosaic_gt_bbox.dtype) ], 1) else: mosaic_labels = np.concatenate([ mosaic_gt_bbox, mosaic_gt_class.astype(mosaic_gt_bbox.dtype) ], 1) if self.remove_outside_box: # for MOT dataset flag1 = mosaic_gt_bbox[:, 0] < 2 * input_w flag2 = mosaic_gt_bbox[:, 2] > 0 flag3 = mosaic_gt_bbox[:, 1] < 2 * input_h flag4 = mosaic_gt_bbox[:, 3] > 0 flag_all = flag1 * flag2 * flag3 * flag4 mosaic_labels = mosaic_labels[flag_all] else: mosaic_labels[:, 0] = np.clip(mosaic_labels[:, 0], 0, 2 * input_w) mosaic_labels[:, 1] = np.clip(mosaic_labels[:, 1], 0, 2 * input_h) mosaic_labels[:, 2] = np.clip(mosaic_labels[:, 2], 0, 2 * input_w) mosaic_labels[:, 3] = np.clip(mosaic_labels[:, 3], 0, 2 * input_h) else: mosaic_labels = np.zeros((1, 6)) # 3. random_affine augment mosaic_img, mosaic_labels = self.random_affine_augment( mosaic_img, mosaic_labels, input_dim=self.input_dim, degrees=self.degrees, translates=self.translate, scales=self.scale, shears=self.shear) # 4. Mixup augment as copypaste, https://arxiv.org/abs/2012.07177 # optinal, not used(enable_mixup=False) in tiny/nano if (self.enable_mixup and not len(mosaic_labels) == 0 and random.random() < self.mixup_prob): sample_mixup = sample[4] mixup_img = sample_mixup['image'] if 'is_crowd' in sample_mixup: cp_labels = np.concatenate([ sample_mixup['gt_bbox'], sample_mixup['gt_class'].astype(mosaic_labels.dtype), sample_mixup['is_crowd'].astype(mosaic_labels.dtype) ], 1) elif 'difficult' in sample_mixup: cp_labels = np.concatenate([ sample_mixup['gt_bbox'], sample_mixup['gt_class'].astype(mosaic_labels.dtype), sample_mixup['difficult'].astype(mosaic_labels.dtype) ], 1) else: cp_labels = np.concatenate([ sample_mixup['gt_bbox'], sample_mixup['gt_class'].astype(mosaic_labels.dtype) ], 1) mosaic_img, mosaic_labels = self.mixup_augment( mosaic_img, mosaic_labels, self.input_dim, cp_labels, mixup_img) sample0 = sample[0] sample0['image'] = mosaic_img.astype(np.uint8) # can not be float32 sample0['h'] = float(mosaic_img.shape[0]) sample0['w'] = float(mosaic_img.shape[1]) sample0['im_shape'][0] = sample0['h'] sample0['im_shape'][1] = sample0['w'] sample0['gt_bbox'] = mosaic_labels[:, :4].astype(np.float32) sample0['gt_class'] = mosaic_labels[:, 4:5].astype(np.float32) if 'is_crowd' in sample[0]: sample0['is_crowd'] = mosaic_labels[:, 5:6].astype(np.float32) if 'difficult' in sample[0]: sample0['difficult'] = mosaic_labels[:, 5:6].astype(np.float32) return sample0 def mixup_augment(self, origin_img, origin_labels, input_dim, cp_labels, img): jit_factor = random.uniform(*self.mixup_scale) FLIP = random.uniform(0, 1) > 0.5 if len(img.shape) == 3: cp_img = np.ones( (input_dim[0], input_dim[1], 3), dtype=np.uint8) * 114 else: cp_img = np.ones(input_dim, dtype=np.uint8) * 114 cp_scale_ratio = min(input_dim[0] / img.shape[0], input_dim[1] / img.shape[1]) resized_img = cv2.resize( img, (int(img.shape[1] * cp_scale_ratio), int(img.shape[0] * cp_scale_ratio)), interpolation=cv2.INTER_LINEAR) cp_img[:int(img.shape[0] * cp_scale_ratio), :int(img.shape[ 1] * cp_scale_ratio)] = resized_img cp_img = cv2.resize(cp_img, (int(cp_img.shape[1] * jit_factor), int(cp_img.shape[0] * jit_factor))) cp_scale_ratio *= jit_factor if FLIP: cp_img = cp_img[:, ::-1, :] origin_h, origin_w = cp_img.shape[:2] target_h, target_w = origin_img.shape[:2] padded_img = np.zeros( (max(origin_h, target_h), max(origin_w, target_w), 3), dtype=np.uint8) padded_img[:origin_h, :origin_w] = cp_img x_offset, y_offset = 0, 0 if padded_img.shape[0] > target_h: y_offset = random.randint(0, padded_img.shape[0] - target_h - 1) if padded_img.shape[1] > target_w: x_offset = random.randint(0, padded_img.shape[1] - target_w - 1) padded_cropped_img = padded_img[y_offset:y_offset + target_h, x_offset: x_offset + target_w] # adjust boxes cp_bboxes_origin_np = cp_labels[:, :4].copy() cp_bboxes_origin_np[:, 0::2] = np.clip(cp_bboxes_origin_np[:, 0::2] * cp_scale_ratio, 0, origin_w) cp_bboxes_origin_np[:, 1::2] = np.clip(cp_bboxes_origin_np[:, 1::2] * cp_scale_ratio, 0, origin_h) if FLIP: cp_bboxes_origin_np[:, 0::2] = ( origin_w - cp_bboxes_origin_np[:, 0::2][:, ::-1]) cp_bboxes_transformed_np = cp_bboxes_origin_np.copy() if self.remove_outside_box: # for MOT dataset cp_bboxes_transformed_np[:, 0::2] -= x_offset cp_bboxes_transformed_np[:, 1::2] -= y_offset else: cp_bboxes_transformed_np[:, 0::2] = np.clip( cp_bboxes_transformed_np[:, 0::2] - x_offset, 0, target_w) cp_bboxes_transformed_np[:, 1::2] = np.clip( cp_bboxes_transformed_np[:, 1::2] - y_offset, 0, target_h) cls_labels = cp_labels[:, 4:5].copy() box_labels = cp_bboxes_transformed_np if cp_labels.shape[-1] == 6: crd_labels = cp_labels[:, 5:6].copy() labels = np.hstack((box_labels, cls_labels, crd_labels)) else: labels = np.hstack((box_labels, cls_labels)) if self.remove_outside_box: labels = labels[labels[:, 0] < target_w] labels = labels[labels[:, 2] > 0] labels = labels[labels[:, 1] < target_h] labels = labels[labels[:, 3] > 0] origin_labels = np.vstack((origin_labels, labels)) origin_img = origin_img.astype(np.float32) origin_img = 0.5 * origin_img + 0.5 * padded_cropped_img.astype( np.float32) return origin_img.astype(np.uint8), origin_labels @register_op class PadResize(BaseOperator): """ PadResize for image and gt_bbbox Args: target_size (list[int]): input shape fill_value (float): pixel value of padded image """ def __init__(self, target_size, fill_value=114): super(PadResize, self).__init__() if isinstance(target_size, Integral): target_size = [target_size, target_size] self.target_size = target_size self.fill_value = fill_value def _resize(self, img, bboxes, labels): ratio = min(self.target_size[0] / img.shape[0], self.target_size[1] / img.shape[1]) w, h = int(img.shape[1] * ratio), int(img.shape[0] * ratio) resized_img = cv2.resize(img, (w, h), interpolation=cv2.INTER_LINEAR) if len(bboxes) > 0: bboxes *= ratio mask = np.minimum(bboxes[:, 2] - bboxes[:, 0], bboxes[:, 3] - bboxes[:, 1]) > 1 bboxes = bboxes[mask] labels = labels[mask] return resized_img, bboxes, labels def _pad(self, img): h, w, _ = img.shape if h == self.target_size[0] and w == self.target_size[1]: return img padded_img = np.full( (self.target_size[0], self.target_size[1], 3), self.fill_value, dtype=np.uint8) padded_img[:h, :w] = img return padded_img def apply(self, sample, context=None): image = sample['image'] bboxes = sample['gt_bbox'] labels = sample['gt_class'] image, bboxes, labels = self._resize(image, bboxes, labels) sample['image'] = self._pad(image).astype(np.float32) sample['gt_bbox'] = bboxes sample['gt_class'] = labels return sample @register_op class RandomShift(BaseOperator): """ Randomly shift image Args: prob (float): probability to do random shift. max_shift (int): max shift pixels filter_thr (int): filter gt bboxes if one side is smaller than this """ def __init__(self, prob=0.5, max_shift=32, filter_thr=1): super(RandomShift, self).__init__() self.prob = prob self.max_shift = max_shift self.filter_thr = filter_thr def calc_shift_coor(self, im_h, im_w, shift_h, shift_w): return [ max(0, shift_w), max(0, shift_h), min(im_w, im_w + shift_w), min(im_h, im_h + shift_h) ] def apply(self, sample, context=None): if random.random() > self.prob: return sample im = sample['image'] gt_bbox = sample['gt_bbox'] gt_class = sample['gt_class'] im_h, im_w = im.shape[:2] shift_h = random.randint(-self.max_shift, self.max_shift) shift_w = random.randint(-self.max_shift, self.max_shift) gt_bbox[:, 0::2] += shift_w gt_bbox[:, 1::2] += shift_h gt_bbox[:, 0::2] = np.clip(gt_bbox[:, 0::2], 0, im_w) gt_bbox[:, 1::2] = np.clip(gt_bbox[:, 1::2], 0, im_h) gt_bbox_h = gt_bbox[:, 2] - gt_bbox[:, 0] gt_bbox_w = gt_bbox[:, 3] - gt_bbox[:, 1] keep = (gt_bbox_w > self.filter_thr) & (gt_bbox_h > self.filter_thr) if not keep.any(): return sample gt_bbox = gt_bbox[keep] gt_class = gt_class[keep] # shift image coor_new = self.calc_shift_coor(im_h, im_w, shift_h, shift_w) # shift frame to the opposite direction coor_old = self.calc_shift_coor(im_h, im_w, -shift_h, -shift_w) canvas = np.zeros_like(im) canvas[coor_new[1]:coor_new[3], coor_new[0]:coor_new[2]] \ = im[coor_old[1]:coor_old[3], coor_old[0]:coor_old[2]] sample['image'] = canvas sample['gt_bbox'] = gt_bbox sample['gt_class'] = gt_class return sample @register_op class StrongAugImage(BaseOperator): def __init__(self, transforms): super(StrongAugImage, self).__init__() self.transforms = Compose(transforms) def apply(self, sample, context=None): im = sample im['image'] = sample['image'].astype('uint8') results = self.transforms(im) sample['image'] = results['image'].astype('uint8') return sample @register_op class RandomColorJitter(BaseOperator): def __init__(self, prob=0.8, brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1): super(RandomColorJitter, self).__init__() self.prob = prob self.brightness = brightness self.contrast = contrast self.saturation = saturation self.hue = hue def apply(self, sample, context=None): if np.random.uniform(0, 1) < self.prob: from paddle.vision.transforms import ColorJitter transform = ColorJitter(self.brightness, self.contrast, self.saturation, self.hue) sample['image'] = transform(sample['image'].astype(np.uint8)) sample['image'] = sample['image'].astype(np.float32) return sample @register_op class RandomGrayscale(BaseOperator): def __init__(self, prob=0.2): super(RandomGrayscale, self).__init__() self.prob = prob def apply(self, sample, context=None): if np.random.uniform(0, 1) < self.prob: from paddle.vision.transforms import Grayscale transform = Grayscale(num_output_channels=3) sample['image'] = transform(sample['image']) return sample @register_op class RandomGaussianBlur(BaseOperator): def __init__(self, prob=0.5, sigma=[0.1, 2.0]): super(RandomGaussianBlur, self).__init__() self.prob = prob self.sigma = sigma def apply(self, sample, context=None): if np.random.uniform(0, 1) < self.prob: sigma = np.random.uniform(self.sigma[0], self.sigma[1]) im = cv2.GaussianBlur(sample['image'], (23, 23), sigma) sample['image'] = im return sample @register_op class RandomErasing(BaseOperator): def __init__(self, prob=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False): super(RandomErasing, self).__init__() assert isinstance(scale, (tuple, list)), "scale should be a tuple or list" assert (scale[0] >= 0 and scale[1] <= 1 and scale[0] <= scale[1] ), "scale should be of kind (min, max) and in range [0, 1]" assert isinstance(ratio, (tuple, list)), "ratio should be a tuple or list" assert (ratio[0] >= 0 and ratio[0] <= ratio[1]), "ratio should be of kind (min, max)" assert isinstance( value, (Number, str, tuple, list)), "value should be a number, tuple, list or str" if isinstance(value, str) and value != "random": raise ValueError("value must be 'random' when type is str") self.prob = prob self.scale = scale self.ratio = ratio self.value = value self.inplace = inplace def _erase(self, img, i, j, h, w, v, inplace=False): if not inplace: img = img.copy() img[i:i + h, j:j + w, ...] = v return img def _get_param(self, img, scale, ratio, value): shape = np.asarray(img).astype(np.uint8).shape h, w, c = shape[-3], shape[-2], shape[-1] img_area = h * w log_ratio = np.log(ratio) for _ in range(1): erase_area = np.random.uniform(*scale) * img_area aspect_ratio = np.exp(np.random.uniform(*log_ratio)) erase_h = int(round(np.sqrt(erase_area * aspect_ratio))) erase_w = int(round(np.sqrt(erase_area / aspect_ratio))) if erase_h >= h or erase_w >= w: continue if value is None: v = np.random.normal(size=[erase_h, erase_w, c]) * 255 else: v = np.array(value)[None, None, :] top = np.random.randint(0, h - erase_h + 1) left = np.random.randint(0, w - erase_w + 1) return top, left, erase_h, erase_w, v return 0, 0, h, w, img def apply(self, sample, context=None): if random.random() < self.prob: if isinstance(self.value, Number): value = [self.value] elif isinstance(self.value, str): value = None else: value = self.value if value is not None and not (len(value) == 1 or len(value) == 3): raise ValueError( "Value should be a single number or a sequence with length equals to image's channel." ) im = sample['image'] top, left, erase_h, erase_w, v = self._get_param(im, self.scale, self.ratio, value) im = self._erase(im, top, left, erase_h, erase_w, v, self.inplace) sample['image'] = im return sample @register_op class RandomErasingCrop(BaseOperator): def __init__(self): super(RandomErasingCrop, self).__init__() self.transform1 = RandomErasing( prob=0.7, scale=(0.05, 0.2), ratio=(0.3, 3.3), value="random") self.transform2 = RandomErasing( prob=0.5, scale=(0.05, 0.2), ratio=(0.1, 6), value="random") self.transform3 = RandomErasing( prob=0.3, scale=(0.05, 0.2), ratio=(0.05, 8), value="random") def apply(self, sample, context=None): sample = self.transform1(sample) sample = self.transform2(sample) sample = self.transform3(sample) return sample