# DETRs Beat YOLOs on Real-time Object Detection ## 最新动态 - 发布RT-DETR-R50和RT-DETR-R101的代码和预训练模型。 - 发布RT-DETR-L和RT-DETR-X的代码和预训练模型。 ## 简介 RT-DETR是第一个实时端到端目标检测器。具体而言,我们设计了一个高效的混合编码器,通过解耦尺度内交互和跨尺度融合来高效处理多尺度特征,并提出了IoU感知的查询选择机制,以优化解码器查询的初始化。此外,RT-DETR支持通过使用不同的解码器层来灵活调整推理速度,而不需要重新训练,这有助于实时目标检测器的实际应用。RT-DETR-L在COCO val2017上实现了53.0%的AP,在T4 GPU上实现了114FPS,RT-DETR-X实现了54.8%的AP和74FPS,在速度和精度方面都优于相同规模的所有YOLO检测器。RT-DETR-R50实现了53.1%的AP和108FPS,RT-DETR-R101实现了54.3%的AP和74FPS,在精度上超过了全部使用相同骨干网络的DETR检测器。 若要了解更多细节,请参考我们的论文[paper](https://arxiv.org/abs/2304.08069).
## 模型 | Model | Epoch | backbone | input shape | $AP^{val}$ | $AP^{val}_{50}$| Params(M) | FLOPs(G) | T4 TensorRT FP16(FPS) | Pretrained Model | config | |:--------------:|:-----:|:----------:| :-------:|:--------------------------:|:---------------------------:|:---------:|:--------:| :---------------------: |:------------------------------------------------------------------------------------:|:-------------------------------------------:| | RT-DETR-R50 | 6x | ResNet-50 | 640 | 53.1 | 71.3 | 42 | 136 | 108 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams) | [config](./rtdetr_r50vd_6x_coco.yml) | RT-DETR-R101 | 6x | ResNet-101 | 640 | 54.3 | 72.7 | 76 | 259 | 74 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_r101vd_6x_coco.pdparams) | [config](./rtdetr_r101vd_6x_coco.yml) | RT-DETR-L | 6x | HGNetv2 | 640 | 53.0 | 71.6 | 32 | 110 | 114 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_hgnetv2_l_6x_coco.pdparams) | [config](rtdetr_hgnetv2_l_6x_coco.yml) | RT-DETR-X | 6x | HGNetv2 | 640 | 54.8 | 73.1 | 67 | 234 | 74 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_hgnetv2_x_6x_coco.pdparams) | [config](rtdetr_hgnetv2_x_6x_coco.yml) **注意事项:** - RT-DETR 使用4个GPU训练。 - RT-DETR 在COCO train2017上训练,并在val2017上评估。 ## 快速开始
依赖包: - PaddlePaddle >= 2.4.1
安装 - [安装指导文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md)
训练&评估 - 单卡GPU上训练: ```shell # training on single-GPU export CUDA_VISIBLE_DEVICES=0 python tools/train.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml --eval ``` - 多卡GPU上训练: ```shell # training on multi-GPU export CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml --fleet --eval ``` - 评估: ```shell python tools/eval.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml \ -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams ``` - 测试: ```shell python tools/infer.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml \ -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams \ --infer_img=./demo/000000570688.jpg ``` 详情请参考[快速开始文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED.md).
## 部署 ### 导出及转换模型
1. 导出模型 ```shell cd PaddleDetection python tools/export_model.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml \ -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams trt=True \ --output_dir=output_inference ```
2. 转换模型至ONNX - 安装[Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX) 和 ONNX ```shell pip install onnx==1.13.0 pip install paddle2onnx==1.0.5 ``` - 转换模型: ```shell paddle2onnx --model_dir=./output_inference/rtdetr_r50vd_6x_coco/ \ --model_filename model.pdmodel \ --params_filename model.pdiparams \ --opset_version 16 \ --save_file rtdetr_r50vd_6x_coco.onnx ``` - 转换成TensorRT(可选): ```shell # 保证TensorRT的版本>=8.5.1 trtexec --onnx=./rtdetr_r50vd_6x_coco.onnx \ --workspace=4096 \ --shapes=image:1x3x640x640 \ --saveEngine=rtdetr_r50vd_6x_coco.trt \ --avgRuns=100 \ --fp16 ```
## 引用RT-DETR 如果需要在你的研究中使用RT-DETR,请通过以下方式引用我们的论文: ``` @misc{lv2023detrs, title={DETRs Beat YOLOs on Real-time Object Detection}, author={Wenyu Lv and Shangliang Xu and Yian Zhao and Guanzhong Wang and Jinman Wei and Cheng Cui and Yuning Du and Qingqing Dang and Yi Liu}, year={2023}, eprint={2304.08069}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```