# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import datetime import six import copy import json import paddle import paddle.distributed as dist from ppdet.utils.checkpoint import save_model from ppdet.metrics import get_infer_results from ppdet.utils.logger import setup_logger logger = setup_logger('ppdet.engine') __all__ = [ 'Callback', 'ComposeCallback', 'LogPrinter', 'Checkpointer', 'VisualDLWriter', 'SniperProposalsGenerator' ] class Callback(object): def __init__(self, model): self.model = model def on_step_begin(self, status): pass def on_step_end(self, status): pass def on_epoch_begin(self, status): pass def on_epoch_end(self, status): pass def on_train_begin(self, status): pass def on_train_end(self, status): pass class ComposeCallback(object): def __init__(self, callbacks): callbacks = [c for c in list(callbacks) if c is not None] for c in callbacks: assert isinstance( c, Callback), "callback should be subclass of Callback" self._callbacks = callbacks def on_step_begin(self, status): for c in self._callbacks: c.on_step_begin(status) def on_step_end(self, status): for c in self._callbacks: c.on_step_end(status) def on_epoch_begin(self, status): for c in self._callbacks: c.on_epoch_begin(status) def on_epoch_end(self, status): for c in self._callbacks: c.on_epoch_end(status) def on_train_begin(self, status): for c in self._callbacks: c.on_train_begin(status) def on_train_end(self, status): for c in self._callbacks: c.on_train_end(status) class LogPrinter(Callback): def __init__(self, model): super(LogPrinter, self).__init__(model) def on_step_end(self, status): if dist.get_world_size() < 2 or dist.get_rank() == 0: mode = status['mode'] if mode == 'train': epoch_id = status['epoch_id'] step_id = status['step_id'] steps_per_epoch = status['steps_per_epoch'] training_staus = status['training_staus'] batch_time = status['batch_time'] data_time = status['data_time'] epoches = self.model.cfg.epoch batch_size = self.model.cfg['{}Reader'.format(mode.capitalize( ))]['batch_size'] logs = training_staus.log() space_fmt = ':' + str(len(str(steps_per_epoch))) + 'd' if step_id % self.model.cfg.log_iter == 0: eta_steps = (epoches - epoch_id) * steps_per_epoch - step_id eta_sec = eta_steps * batch_time.global_avg eta_str = str(datetime.timedelta(seconds=int(eta_sec))) ips = float(batch_size) / batch_time.avg fmt = ' '.join([ 'Epoch: [{}]', '[{' + space_fmt + '}/{}]', 'learning_rate: {lr:.6f}', '{meters}', 'eta: {eta}', 'batch_cost: {btime}', 'data_cost: {dtime}', 'ips: {ips:.4f} images/s', ]) fmt = fmt.format( epoch_id, step_id, steps_per_epoch, lr=status['learning_rate'], meters=logs, eta=eta_str, btime=str(batch_time), dtime=str(data_time), ips=ips) logger.info(fmt) if mode == 'eval': step_id = status['step_id'] if step_id % 100 == 0: logger.info("Eval iter: {}".format(step_id)) def on_epoch_end(self, status): if dist.get_world_size() < 2 or dist.get_rank() == 0: mode = status['mode'] if mode == 'eval': sample_num = status['sample_num'] cost_time = status['cost_time'] logger.info('Total sample number: {}, averge FPS: {}'.format( sample_num, sample_num / cost_time)) class Checkpointer(Callback): def __init__(self, model): super(Checkpointer, self).__init__(model) self.best_ap = -1000. self.save_dir = os.path.join(self.model.cfg.save_dir, self.model.cfg.filename) if hasattr(self.model.model, 'student_model'): self.weight = self.model.model.student_model else: self.weight = self.model.model def on_epoch_end(self, status): # Checkpointer only performed during training mode = status['mode'] epoch_id = status['epoch_id'] weight = None save_name = None if dist.get_world_size() < 2 or dist.get_rank() == 0: if mode == 'train': end_epoch = self.model.cfg.epoch if ( epoch_id + 1 ) % self.model.cfg.snapshot_epoch == 0 or epoch_id == end_epoch - 1: save_name = str( epoch_id) if epoch_id != end_epoch - 1 else "model_final" weight = self.weight.state_dict() elif mode == 'eval': if 'save_best_model' in status and status['save_best_model']: for metric in self.model._metrics: map_res = metric.get_results() eval_func = "ap" if 'pose3d' in map_res: key = 'pose3d' eval_func = "mpjpe" elif 'bbox' in map_res: key = 'bbox' elif 'keypoint' in map_res: key = 'keypoint' else: key = 'mask' if key not in map_res: logger.warning("Evaluation results empty, this may be due to " \ "training iterations being too few or not " \ "loading the correct weights.") return if map_res[key][0] >= self.best_ap: self.best_ap = map_res[key][0] save_name = 'best_model' weight = self.weight.state_dict() logger.info("Best test {} {} is {:0.3f}.".format( key, eval_func, abs(self.best_ap))) if weight: if self.model.use_ema: exchange_save_model = status.get('exchange_save_model', False) if not exchange_save_model: # save model and ema_model save_model( status['weight'], self.model.optimizer, self.save_dir, save_name, epoch_id + 1, ema_model=weight) else: # save model(student model) and ema_model(teacher model) # in DenseTeacher SSOD, the teacher model will be higher, # so exchange when saving pdparams student_model = status['weight'] # model teacher_model = weight # ema_model save_model( teacher_model, self.model.optimizer, self.save_dir, save_name, epoch_id + 1, ema_model=student_model) del teacher_model del student_model else: save_model(weight, self.model.optimizer, self.save_dir, save_name, epoch_id + 1) class WiferFaceEval(Callback): def __init__(self, model): super(WiferFaceEval, self).__init__(model) def on_epoch_begin(self, status): assert self.model.mode == 'eval', \ "WiferFaceEval can only be set during evaluation" for metric in self.model._metrics: metric.update(self.model.model) sys.exit() class VisualDLWriter(Callback): """ Use VisualDL to log data or image """ def __init__(self, model): super(VisualDLWriter, self).__init__(model) assert six.PY3, "VisualDL requires Python >= 3.5" try: from visualdl import LogWriter except Exception as e: logger.error('visualdl not found, plaese install visualdl. ' 'for example: `pip install visualdl`.') raise e self.vdl_writer = LogWriter( model.cfg.get('vdl_log_dir', 'vdl_log_dir/scalar')) self.vdl_loss_step = 0 self.vdl_mAP_step = 0 self.vdl_image_step = 0 self.vdl_image_frame = 0 def on_step_end(self, status): mode = status['mode'] if dist.get_world_size() < 2 or dist.get_rank() == 0: if mode == 'train': training_staus = status['training_staus'] for loss_name, loss_value in training_staus.get().items(): self.vdl_writer.add_scalar(loss_name, loss_value, self.vdl_loss_step) self.vdl_loss_step += 1 elif mode == 'test': ori_image = status['original_image'] result_image = status['result_image'] self.vdl_writer.add_image( "original/frame_{}".format(self.vdl_image_frame), ori_image, self.vdl_image_step) self.vdl_writer.add_image( "result/frame_{}".format(self.vdl_image_frame), result_image, self.vdl_image_step) self.vdl_image_step += 1 # each frame can display ten pictures at most. if self.vdl_image_step % 10 == 0: self.vdl_image_step = 0 self.vdl_image_frame += 1 def on_epoch_end(self, status): mode = status['mode'] if dist.get_world_size() < 2 or dist.get_rank() == 0: if mode == 'eval': for metric in self.model._metrics: for key, map_value in metric.get_results().items(): self.vdl_writer.add_scalar("{}-mAP".format(key), map_value[0], self.vdl_mAP_step) self.vdl_mAP_step += 1 class WandbCallback(Callback): def __init__(self, model): super(WandbCallback, self).__init__(model) try: import wandb self.wandb = wandb except Exception as e: logger.error('wandb not found, please install wandb. ' 'Use: `pip install wandb`.') raise e self.wandb_params = model.cfg.get('wandb', None) self.save_dir = os.path.join(self.model.cfg.save_dir, self.model.cfg.filename) if self.wandb_params is None: self.wandb_params = {} for k, v in model.cfg.items(): if k.startswith("wandb_"): self.wandb_params.update({k.lstrip("wandb_"): v}) self._run = None if dist.get_world_size() < 2 or dist.get_rank() == 0: _ = self.run self.run.config.update(self.model.cfg) self.run.define_metric("epoch") self.run.define_metric("eval/*", step_metric="epoch") self.best_ap = -1000. self.fps = [] @property def run(self): if self._run is None: if self.wandb.run is not None: logger.info( "There is an ongoing wandb run which will be used" "for logging. Please use `wandb.finish()` to end that" "if the behaviour is not intended") self._run = self.wandb.run else: self._run = self.wandb.init(**self.wandb_params) return self._run def save_model(self, optimizer, save_dir, save_name, last_epoch, ema_model=None, ap=None, fps=None, tags=None): if dist.get_world_size() < 2 or dist.get_rank() == 0: model_path = os.path.join(save_dir, save_name) metadata = {} metadata["last_epoch"] = last_epoch if ap: metadata["ap"] = ap if fps: metadata["fps"] = fps if ema_model is None: ema_artifact = self.wandb.Artifact( name="ema_model-{}".format(self.run.id), type="model", metadata=metadata) model_artifact = self.wandb.Artifact( name="model-{}".format(self.run.id), type="model", metadata=metadata) ema_artifact.add_file(model_path + ".pdema", name="model_ema") model_artifact.add_file(model_path + ".pdparams", name="model") self.run.log_artifact(ema_artifact, aliases=tags) self.run.log_artfact(model_artifact, aliases=tags) else: model_artifact = self.wandb.Artifact( name="model-{}".format(self.run.id), type="model", metadata=metadata) model_artifact.add_file(model_path + ".pdparams", name="model") self.run.log_artifact(model_artifact, aliases=tags) def on_step_end(self, status): mode = status['mode'] if dist.get_world_size() < 2 or dist.get_rank() == 0: if mode == 'train': training_status = status['training_staus'].get() for k, v in training_status.items(): training_status[k] = float(v) # calculate ips, data_cost, batch_cost batch_time = status['batch_time'] data_time = status['data_time'] batch_size = self.model.cfg['{}Reader'.format(mode.capitalize( ))]['batch_size'] ips = float(batch_size) / float(batch_time.avg) data_cost = float(data_time.avg) batch_cost = f metrics = {"train/" + k: v for k, v in training_status.items()} metrics["train/ips"] = ips metrics["train/data_cost"] = data_cost metrics["train/batch_cost"] = batch_cost self.fps.append(ips) self.run.log(metrics) def on_epoch_end(self, status): mode = status['mode'] epoch_id = status['epoch_id'] save_name = None if dist.get_world_size() < 2 or dist.get_rank() == 0: if mode == 'train': fps = sum(self.fps) / len(self.fps) self.fps = [] end_epoch = self.model.cfg.epoch if ( epoch_id + 1 ) % self.model.cfg.snapshot_epoch == 0 or epoch_id == end_epoch - 1: save_name = str( epoch_id) if epoch_id != end_epoch - 1 else "model_final" tags = ["latest", "epoch_{}".format(epoch_id)] self.save_model( self.model.optimizer, self.save_dir, save_name, epoch_id + 1, self.model.use_ema, fps=fps, tags=tags) if mode == 'eval': sample_num = status['sample_num'] cost_time = status['cost_time'] fps = sample_num / cost_time merged_dict = {} for metric in self.model._metrics: for key, map_value in metric.get_results().items(): merged_dict["eval/{}-mAP".format(key)] = map_value[0] merged_dict["epoch"] = status["epoch_id"] merged_dict["eval/fps"] = sample_num / cost_time self.run.log(merged_dict) if 'save_best_model' in status and status['save_best_model']: for metric in self.model._metrics: map_res = metric.get_results() if 'pose3d' in map_res: key = 'pose3d' elif 'bbox' in map_res: key = 'bbox' elif 'keypoint' in map_res: key = 'keypoint' else: key = 'mask' if key not in map_res: logger.warning("Evaluation results empty, this may be due to " \ "training iterations being too few or not " \ "loading the correct weights.") return if map_res[key][0] >= self.best_ap: self.best_ap = map_res[key][0] save_name = 'best_model' tags = ["best", "epoch_{}".format(epoch_id)] self.save_model( self.model.optimizer, self.save_dir, save_name, last_epoch=epoch_id + 1, ema_model=self.model.use_ema, ap=abs(self.best_ap), fps=fps, tags=tags) def on_train_end(self, status): self.run.finish() class SniperProposalsGenerator(Callback): def __init__(self, model): super(SniperProposalsGenerator, self).__init__(model) ori_dataset = self.model.dataset self.dataset = self._create_new_dataset(ori_dataset) self.loader = self.model.loader self.cfg = self.model.cfg self.infer_model = self.model.model def _create_new_dataset(self, ori_dataset): dataset = copy.deepcopy(ori_dataset) # init anno_cropper dataset.init_anno_cropper() # generate infer roidbs ori_roidbs = dataset.get_ori_roidbs() roidbs = dataset.anno_cropper.crop_infer_anno_records(ori_roidbs) # set new roidbs dataset.set_roidbs(roidbs) return dataset def _eval_with_loader(self, loader): results = [] with paddle.no_grad(): self.infer_model.eval() for step_id, data in enumerate(loader): outs = self.infer_model(data) for key in ['im_shape', 'scale_factor', 'im_id']: outs[key] = data[key] for key, value in outs.items(): if hasattr(value, 'numpy'): outs[key] = value.numpy() results.append(outs) return results def on_train_end(self, status): self.loader.dataset = self.dataset results = self._eval_with_loader(self.loader) results = self.dataset.anno_cropper.aggregate_chips_detections(results) # sniper proposals = [] clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} for outs in results: batch_res = get_infer_results(outs, clsid2catid) start = 0 for i, im_id in enumerate(outs['im_id']): bbox_num = outs['bbox_num'] end = start + bbox_num[i] bbox_res = batch_res['bbox'][start:end] \ if 'bbox' in batch_res else None if bbox_res: proposals += bbox_res logger.info("save proposals in {}".format(self.cfg.proposals_path)) with open(self.cfg.proposals_path, 'w') as f: json.dump(proposals, f)