[English](README.md) | 简体中文 # 特色垂类跟踪模型 ## 车辆跟踪 (Vehicle Tracking) 车辆跟踪的主要应用之一是交通监控。在监控场景中,大多是从公共区域的监控摄像头视角拍摄车辆,获取图像后再进行车辆检测和跟踪。 [BDD100K](https://www.bdd100k.com)是伯克利大学AI实验室(BAIR)提出的一个驾驶视频数据集,是以驾驶员视角为主。该数据集不仅分多类别标注,还分晴天、多云等六种天气,住宅区、公路等六种场景,白天、夜晚等三个时间段,以及是否遮挡、是否截断。BDD100K MOT数据集包含1400个视频序列用于训练,200个视频序列用于验证。每个视频序列大约40秒长,每秒5帧,因此每个视频大约有200帧。此处针对BDD100K MOT数据集进行提取,抽取出类别为car, truck, bus, trailer, other vehicle的数据组合成一个Vehicle类别。 [KITTI](http://www.cvlibs.net/datasets/kitti)是一个包含市区、乡村和高速公路等场景采集的数据集,每张图像中最多达15辆车和30个行人,还有各种程度的遮挡与截断。[KITTI-Tracking](http://www.cvlibs.net/datasets/kitti/eval_tracking.php)(2D bounding-boxes)数据集一共有50个视频序列,21个为训练集,29个为测试集,目标是估计类别Car和Pedestrian的目标轨迹,此处抽取出类别为Car的数据作为一个Vehicle类别。 [VisDrone](http://aiskyeye.com)是无人机视角拍摄的数据集,是以俯视视角为主。该数据集涵盖不同位置(取自中国数千个相距数千公里的14个不同城市)、不同环境(城市和乡村)、不同物体(行人、车辆、自行车等)和不同密度(稀疏和拥挤的场景)。[VisDrone2019-MOT](https://github.com/VisDrone/VisDrone-Dataset)包含56个视频序列用于训练,7个视频序列用于验证。此处针对VisDrone2019-MOT多目标跟踪数据集进行提取,抽取出类别为car、van、truck、bus的数据组合成一个Vehicle类别。 ## 模型库 ### FairMOT在各个数据集val-set上Vehicle类别的结果 | 数据集 | 骨干网络 | 输入尺寸 | MOTA | IDF1 | FPS | 下载链接 | 配置文件 | | :-------------| :-------- | :------- | :----: | :----: | :----: | :-----: |:------: | | BDD100K | DLA-34 | 1088x608 | 43.5 | 50.0 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_bdd100kmot_vehicle.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_bdd100kmot_vehicle.yml) | | BDD100K | HRNetv2-W18| 576x320 | 32.6 | 38.7 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320_bdd100kmot_vehicle.pdparams) | [配置文件](./fairmot_hrnetv2_w18_dlafpn_30e_576x320_bdd100kmot_vehicle.yml) | | KITTI | DLA-34 | 1088x608 | 82.7 | - | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_kitti_vehicle.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_kitti_vehicle.yml) | | VisDrone | DLA-34 | 1088x608 | 52.1 | 63.3 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_visdrone_vehicle.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_visdrone_vehicle.yml) | | VisDrone | HRNetv2-W18| 1088x608 | 46.0 | 56.8 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_vehicle.pdparams) | [配置文件](./fairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_vehicle.yml) | | VisDrone | HRNetv2-W18| 864x480 | 43.7 | 56.1 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_864x480_visdrone_vehicle.pdparams) | [配置文件](./fairmot_hrnetv2_w18_dlafpn_30e_864x480_visdrone_vehicle.yml) | | VisDrone | HRNetv2-W18| 576x320 | 39.8 | 52.4 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_vehicle.pdparams) | [配置文件](./fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_vehicle.yml) | **注意:** FairMOT均使用DLA-34为骨干网络,4个GPU进行训练,每个GPU上batch size为6,训练30个epoch。 ## 数据集准备和处理 ### 1、数据集处理代码说明 代码统一都在tools目录下 ``` # bdd100kmot tools/bdd100kmot/gen_bdd100kmot_vehicle.sh:通过执行bdd100k2mot.py和gen_labels_MOT.py生成bdd100kmot_vehicle 数据集 tools/bdd100kmot/bdd100k2mot.py:将bdd100k全集转换成mot格式 tools/bdd100kmot/gen_labels_MOT.py:生成单类别的labels_with_ids文件 # visdrone tools/visdrone/visdrone2mot.py:生成visdrone_vehicle ``` ### 2、bdd100kmot_vehicle数据集处理 ``` # 复制tools/bdd100kmot里的代码到数据集目录下 # 生成bdd100kmot_vehicle MOT格式的数据,抽取类别classes=2,3,4,9,10 (car, truck, bus, trailer, other vehicle) <<--生成前目录-->> ├── bdd100k │ ├── images │ ├── labels <<--生成后目录-->> ├── bdd100k │ ├── images │ ├── labels │ ├── bdd100kmot_vehicle │ │ ├── images │ │ │ ├── train │ │ │ ├── val │ │ ├── labels_with_ids │ │ │ ├── train │ │ │ ├── val # 执行 sh gen_bdd100kmot_vehicle.sh ``` ### 3、visdrone_vehicle数据集处理 ``` # 复制tools/visdrone/visdrone2mot.py到数据集目录下 # 生成visdrone_vehicle MOT格式的数据,抽取类别classes=4,5,6,9 (car, van, truck, bus) <<--生成前目录-->> ├── VisDrone2019-MOT-val │ ├── annotations │ ├── sequences │ ├── visdrone2mot.py <<--生成后目录-->> ├── VisDrone2019-MOT-val │ ├── annotations │ ├── sequences │ ├── visdrone2mot.py │ ├── visdrone_vehicle │ │ ├── images │ │ │ ├── train │ │ │ ├── val │ │ ├── labels_with_ids │ │ │ ├── train │ │ │ ├── val # 执行 python visdrone2mot.py --transMot=True --data_name=visdrone_vehicle --phase=val python visdrone2mot.py --transMot=True --data_name=visdrone_vehicle --phase=train ``` ## 快速开始 ### 1. 训练 使用2个GPU通过如下命令一键式启动训练 ```bash python -m paddle.distributed.launch --log_dir=./fairmot_dla34_30e_1088x608_bdd100kmot_vehicle/ --gpus 0,1 tools/train.py -c configs/mot/vehicle/fairmot_dla34_30e_1088x608_bdd100kmot_vehicle.yml ``` ### 2. 评估 使用单张GPU通过如下命令一键式启动评估 ```bash # 使用PaddleDetection发布的权重 CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/vehicle/fairmot_dla34_30e_1088x608_bdd100kmot_vehicle.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_bdd100kmot_vehicle.pdparams # 使用训练保存的checkpoint CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/vehicle/fairmot_dla34_30e_1088x608_bdd100kmot_vehicle.yml -o weights=output/fairmot_dla34_30e_1088x608_bdd100kmot_vehicle/model_final.pdparams ``` ### 3. 预测 使用单个GPU通过如下命令预测一个视频,并保存为视频 ```bash # 预测一个视频 CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/vehicle/fairmot_dla34_30e_1088x608_bdd100kmot_vehicle.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_bdd100kmot_vehicle.pdparams --video_file={your video name}.mp4 --save_videos ``` **注意:** 请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg`。 ### 4. 导出预测模型 ```bash CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/vehicle/fairmot_dla34_30e_1088x608_bdd100kmot_vehicle.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_bdd100kmot_vehicle.pdparams ``` ### 5. 用导出的模型基于Python去预测 ```bash python deploy/python/mot_jde_infer.py --model_dir=output_inference/fairmot_dla34_30e_1088x608_bdd100kmot_vehicle --video_file={your video name}.mp4 --device=GPU --save_mot_txts ``` **注意:** 跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加`--save_mot_txts`表示保存跟踪结果的txt文件,或`--save_images`表示保存跟踪结果可视化图片。 跟踪结果txt文件每行信息是`frame,id,x1,y1,w,h,score,-1,-1,-1`。 ## 引用 ``` @article{zhang2020fair, title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking}, author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu}, journal={arXiv preprint arXiv:2004.01888}, year={2020} } @InProceedings{bdd100k, author = {Yu, Fisher and Chen, Haofeng and Wang, Xin and Xian, Wenqi and Chen, Yingying and Liu, Fangchen and Madhavan, Vashisht and Darrell, Trevor}, title = {BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning}, booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2020} } @INPROCEEDINGS{Geiger2012CVPR, author = {Andreas Geiger and Philip Lenz and Raquel Urtasun}, title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite}, booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2012} } @ARTICLE{9573394, author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, title={Detection and Tracking Meet Drones Challenge}, year={2021}, volume={}, number={}, pages={1-1}, doi={10.1109/TPAMI.2021.3119563} } ```