import os import time import numpy as np from PIL import Image, ImageDraw import paddle.fluid as fluid import argparse import cv2 import yaml import copy import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) precision_map = { 'trt_int8': fluid.core.AnalysisConfig.Precision.Int8, 'trt_fp32': fluid.core.AnalysisConfig.Precision.Float32, 'trt_fp16': fluid.core.AnalysisConfig.Precision.Half } def create_config(model_path, mode='fluid', batch_size=1, min_subgraph_size=3): model_file = os.path.join(model_path, '__model__') params_file = os.path.join(model_path, '__params__') config = fluid.core.AnalysisConfig(model_file, params_file) config.enable_use_gpu(100, 0) config.switch_use_feed_fetch_ops(False) config.switch_specify_input_names(True) logger.info('min_subgraph_size = %d.' % (min_subgraph_size)) if mode in precision_map.keys(): config.enable_tensorrt_engine( workspace_size=1 << 30, max_batch_size=batch_size, min_subgraph_size=min_subgraph_size, precision_mode=precision_map[mode], use_static=False, use_calib_mode=mode == 'trt_int8') logger.info('Run inference by {}.'.format(mode)) elif mode == 'fluid': logger.info('Run inference by Fluid FP32.') else: logger.fatal( 'Wrong mode, only support trt_int8, trt_fp32, trt_fp16, fluid.') return config def offset_to_lengths(lod): offset = lod[0] lengths = [offset[i + 1] - offset[i] for i in range(len(offset) - 1)] return [lengths] def DecodeImage(im_path): assert os.path.exists(im_path), "Image path {} can not be found".format( im_path) with open(im_path, 'rb') as f: im = f.read() data = np.frombuffer(im, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) return im def get_extra_info(im, arch, shape, scale): info = [] input_shape = [] im_shape = [] logger.info('The architecture is {}'.format(arch)) if 'YOLO' in arch: im_size = np.array([shape[:2]]).astype('int32') logger.info('Extra info: im_size') info.append(im_size) elif arch in ['SSD', 'Face']: im_shape = np.array([shape[:2]]).astype('int32') logger.info('Extra info: im_shape') info.append([im_shape]) elif 'RetinaNet' in arch: input_shape.extend(im.shape[2:]) im_info = np.array([input_shape + [scale]]).astype('float32') logger.info('Extra info: im_info') info.append(im_info) elif 'RCNN' in arch: input_shape.extend(im.shape[2:]) im_shape.extend(shape[:2]) im_info = np.array([input_shape + [scale]]).astype('float32') im_shape = np.array([im_shape + [1.]]).astype('float32') logger.info('Extra info: im_info, im_shape') info.append(im_info) info.append(im_shape) else: logger.error( "Unsupported arch: {}, expect YOLO, SSD, RetinaNet, RCNN and Face". format(arch)) return info class Resize(object): def __init__(self, target_size, max_size=0, interp=cv2.INTER_LINEAR, use_cv2=True, image_shape=None): super(Resize, self).__init__() self.target_size = target_size self.max_size = max_size self.interp = interp self.use_cv2 = use_cv2 self.image_shape = image_shape def __call__(self, im): origin_shape = im.shape[:2] im_c = im.shape[2] if self.max_size != 0: im_size_min = np.min(origin_shape[0:2]) im_size_max = np.max(origin_shape[0:2]) im_scale = float(self.target_size) / float(im_size_min) if np.round(im_scale * im_size_max) > self.max_size: im_scale = float(self.max_size) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale resize_w = int(im_scale_x * float(origin_shape[1])) resize_h = int(im_scale_y * float(origin_shape[0])) else: im_scale_x = float(self.target_size) / float(origin_shape[1]) im_scale_y = float(self.target_size) / float(origin_shape[0]) resize_w = self.target_size resize_h = self.target_size if self.use_cv2: im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) else: if self.max_size != 0: raise TypeError( 'If you set max_size to cap the maximum size of image,' 'please set use_cv2 to True to resize the image.') im = im.astype('uint8') im = Image.fromarray(im) im = im.resize((int(resize_w), int(resize_h)), self.interp) im = np.array(im) # padding im if self.max_size != 0 and self.image_shape is not None: padding_im = np.zeros( (self.max_size, self.max_size, im_c), dtype=np.float32) im_h, im_w = im.shape[:2] padding_im[:im_h, :im_w, :] = im im = padding_im return im, im_scale_x class Normalize(object): def __init__(self, mean, std, is_scale=True, is_channel_first=False): super(Normalize, self).__init__() self.mean = mean self.std = std self.is_scale = is_scale self.is_channel_first = is_channel_first def __call__(self, im): im = im.astype(np.float32, copy=False) if self.is_channel_first: mean = np.array(self.mean)[:, np.newaxis, np.newaxis] std = np.array(self.std)[:, np.newaxis, np.newaxis] else: mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] if self.is_scale: im = im / 255.0 im -= mean im /= std return im class Permute(object): def __init__(self, to_bgr=False, channel_first=True): self.to_bgr = to_bgr self.channel_first = channel_first def __call__(self, im): if self.channel_first: im = im.transpose((2, 0, 1)) if self.to_bgr: im = im[[2, 1, 0], :, :] return im.copy() class PadStride(object): def __init__(self, stride=0): assert stride >= 0, "Unsupported stride: {}," " the stride in PadStride must be greater " "or equal to 0".format(stride) self.coarsest_stride = stride def __call__(self, im): coarsest_stride = self.coarsest_stride if coarsest_stride == 0: return im im_c, im_h, im_w = im.shape pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = im return padding_im def Preprocess(img_path, arch, config): img = DecodeImage(img_path) orig_shape = img.shape scale = 1. data = [] data_config = copy.deepcopy(config) for data_aug_conf in data_config: obj = data_aug_conf.pop('type') preprocess = eval(obj)(**data_aug_conf) if obj == 'Resize': img, scale = preprocess(img) else: img = preprocess(img) img = img[np.newaxis, :] # N, C, H, W data.append(img) extra_info = get_extra_info(img, arch, orig_shape, scale) data += extra_info return data def get_category_info(with_background, label_list): if label_list[0] != 'background' and with_background: label_list.insert(0, 'background') if label_list[0] == 'background' and not with_background: label_list = label_list[1:] clsid2catid = {i: i for i in range(len(label_list))} catid2name = {i: name for i, name in enumerate(label_list)} return clsid2catid, catid2name def clip_bbox(bbox): xmin = max(min(bbox[0], 1.), 0.) ymin = max(min(bbox[1], 1.), 0.) xmax = max(min(bbox[2], 1.), 0.) ymax = max(min(bbox[3], 1.), 0.) return xmin, ymin, xmax, ymax def bbox2out(results, clsid2catid, is_bbox_normalized=False): """ Args: results: request a dict, should include: `bbox`, `im_id`, if is_bbox_normalized=True, also need `im_shape`. clsid2catid: class id to category id map of COCO2017 dataset. is_bbox_normalized: whether or not bbox is normalized. """ xywh_res = [] for t in results: bboxes = t['bbox'][0] lengths = t['bbox'][1][0] if bboxes.shape == (1, 1) or bboxes is None: continue k = 0 for i in range(len(lengths)): num = lengths[i] for j in range(num): dt = bboxes[k] clsid, score, xmin, ymin, xmax, ymax = dt.tolist() catid = (clsid2catid[int(clsid)]) if is_bbox_normalized: xmin, ymin, xmax, ymax = \ clip_bbox([xmin, ymin, xmax, ymax]) w = xmax - xmin h = ymax - ymin im_shape = t['im_shape'][0][i].tolist() im_height, im_width = int(im_shape[0]), int(im_shape[1]) xmin *= im_width ymin *= im_height w *= im_width h *= im_height else: w = xmax - xmin + 1 h = ymax - ymin + 1 bbox = [xmin, ymin, w, h] coco_res = {'category_id': catid, 'bbox': bbox, 'score': score} xywh_res.append(coco_res) k += 1 return xywh_res def expand_boxes(boxes, scale): """ Expand an array of boxes by a given scale. """ w_half = (boxes[:, 2] - boxes[:, 0]) * .5 h_half = (boxes[:, 3] - boxes[:, 1]) * .5 x_c = (boxes[:, 2] + boxes[:, 0]) * .5 y_c = (boxes[:, 3] + boxes[:, 1]) * .5 w_half *= scale h_half *= scale boxes_exp = np.zeros(boxes.shape) boxes_exp[:, 0] = x_c - w_half boxes_exp[:, 2] = x_c + w_half boxes_exp[:, 1] = y_c - h_half boxes_exp[:, 3] = y_c + h_half return boxes_exp def mask2out(results, clsid2catid, resolution, thresh_binarize=0.5): import pycocotools.mask as mask_util scale = (resolution + 2.0) / resolution segm_res = [] for t in results: bboxes = t['bbox'][0] lengths = t['bbox'][1][0] if bboxes.shape == (1, 1) or bboxes is None: continue if len(bboxes.tolist()) == 0: continue masks = t['mask'][0] s = 0 # for each sample for i in range(len(lengths)): num = lengths[i] im_shape = t['im_shape'][i] bbox = bboxes[s:s + num][:, 2:] clsid_scores = bboxes[s:s + num][:, 0:2] mask = masks[s:s + num] s += num im_h = int(im_shape[0]) im_w = int(im_shape[1]) expand_bbox = expand_boxes(bbox, scale) expand_bbox = expand_bbox.astype(np.int32) padded_mask = np.zeros( (resolution + 2, resolution + 2), dtype=np.float32) for j in range(num): xmin, ymin, xmax, ymax = expand_bbox[j].tolist() clsid, score = clsid_scores[j].tolist() clsid = int(clsid) padded_mask[1:-1, 1:-1] = mask[j, clsid, :, :] catid = clsid2catid[clsid] w = xmax - xmin + 1 h = ymax - ymin + 1 w = np.maximum(w, 1) h = np.maximum(h, 1) resized_mask = cv2.resize(padded_mask, (w, h)) resized_mask = np.array( resized_mask > thresh_binarize, dtype=np.uint8) im_mask = np.zeros((im_h, im_w), dtype=np.uint8) x0 = min(max(xmin, 0), im_w) x1 = min(max(xmax + 1, 0), im_w) y0 = min(max(ymin, 0), im_h) y1 = min(max(ymax + 1, 0), im_h) im_mask[y0:y1, x0:x1] = resized_mask[(y0 - ymin):(y1 - ymin), ( x0 - xmin):(x1 - xmin)] segm = mask_util.encode( np.array( im_mask[:, :, np.newaxis], order='F'))[0] catid = clsid2catid[clsid] segm['counts'] = segm['counts'].decode('utf8') coco_res = { 'category_id': catid, 'segmentation': segm, 'score': score } segm_res.append(coco_res) return segm_res def color_map(num_classes): color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = np.array(color_map).reshape(-1, 3) return color_map def draw_bbox(image, catid2name, bboxes, threshold, color_list): """ draw bbox on image """ draw = ImageDraw.Draw(image) for dt in np.array(bboxes): catid, bbox, score = dt['category_id'], dt['bbox'], dt['score'] if score < threshold: continue xmin, ymin, w, h = bbox xmax = xmin + w ymax = ymin + h color = tuple(color_list[catid]) # draw bbox draw.line( [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin)], width=2, fill=color) # draw label text = "{} {:.2f}".format(catid2name[catid], score) tw, th = draw.textsize(text) draw.rectangle( [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color) draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255)) return image def draw_mask(image, masks, threshold, color_list, alpha=0.7): """ Draw mask on image """ mask_color_id = 0 w_ratio = .4 img_array = np.array(image).astype('float32') for dt in np.array(masks): segm, score = dt['segmentation'], dt['score'] if score < threshold: continue import pycocotools.mask as mask_util mask = mask_util.decode(segm) * 255 color_mask = color_list[mask_color_id % len(color_list), 0:3] mask_color_id += 1 for c in range(3): color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255 idx = np.nonzero(mask) img_array[idx[0], idx[1], :] *= 1.0 - alpha img_array[idx[0], idx[1], :] += alpha * color_mask return Image.fromarray(img_array.astype('uint8')) def get_bbox_result(output, result, conf, clsid2catid): is_bbox_normalized = True if conf['arch'] in ['SSD', 'Face'] else False lengths = offset_to_lengths(output.lod()) np_data = np.array(output) if conf[ 'use_python_inference'] else output.copy_to_cpu() result['bbox'] = (np_data, lengths) result['im_id'] = np.array([[0]]) bbox_results = bbox2out([result], clsid2catid, is_bbox_normalized) return bbox_results def get_mask_result(output, result, conf, clsid2catid): resolution = conf['mask_resolution'] bbox_out, mask_out = output lengths = offset_to_lengths(bbox_out.lod()) bbox = np.array(bbox_out) if conf[ 'use_python_inference'] else bbox_out.copy_to_cpu() mask = np.array(mask_out) if conf[ 'use_python_inference'] else mask_out.copy_to_cpu() result['bbox'] = (bbox, lengths) result['mask'] = (mask, lengths) mask_results = mask2out([result], clsid2catid, conf['mask_resolution']) return mask_results def visualize(bbox_results, catid2name, num_classes, mask_results=None): image = Image.open(FLAGS.infer_img).convert('RGB') color_list = color_map(num_classes) image = draw_bbox(image, catid2name, bbox_results, 0.5, color_list) if mask_results is not None: image = draw_mask(image, mask_results, 0.5, color_list) image_path = os.path.split(FLAGS.infer_img)[-1] if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) out_path = os.path.join(FLAGS.output_dir, image_path) image.save(out_path, quality=95) logger.info('Save visualize result to {}'.format(out_path)) def infer(): logger.info("cpp_infer.py is deprecated since release/0.3. Please use" "deploy/python for your python deployment") model_path = FLAGS.model_path config_path = FLAGS.config_path res = {} assert model_path is not None, "Model path: {} does not exist!".format( model_path) assert config_path is not None, "Config path: {} does not exist!".format( config_path) with open(config_path) as f: conf = yaml.safe_load(f) use_trt = not conf['use_python_inference'] and 'trt' in conf['mode'] if use_trt: logger.warning( "Due to the limitation of tensorRT, the image shape needs to set in export_model" ) img_data = Preprocess(FLAGS.infer_img, conf['arch'], conf['Preprocess']) if conf['arch'] in ['SSD', 'Face']: img_data, res['im_shape'] = img_data img_data = [img_data] if conf['use_python_inference']: place = fluid.CUDAPlace(0) exe = fluid.Executor(place) infer_prog, feed_var_names, fetch_targets = fluid.io.load_inference_model( dirname=model_path, executor=exe, model_filename='__model__', params_filename='__params__') data_dict = {k: v for k, v in zip(feed_var_names, img_data)} else: config = create_config( model_path, mode=conf['mode'], min_subgraph_size=conf['min_subgraph_size']) predict = fluid.core.create_paddle_predictor(config) input_names = predict.get_input_names() for ind, d in enumerate(img_data): input_tensor = predict.get_input_tensor(input_names[ind]) input_tensor.copy_from_cpu(d.copy()) logger.info('warmup...') for i in range(10): if conf['use_python_inference']: outs = exe.run(infer_prog, feed=data_dict, fetch_list=fetch_targets, return_numpy=False) else: predict.zero_copy_run() cnt = 100 logger.info('run benchmark...') t1 = time.time() for i in range(cnt): if conf['use_python_inference']: outs = exe.run(infer_prog, feed=data_dict, fetch_list=fetch_targets, return_numpy=False) else: outs = [] predict.zero_copy_run() output_names = predict.get_output_names() for o_name in output_names: outs.append(predict.get_output_tensor(o_name)) t2 = time.time() ms = (t2 - t1) * 1000.0 / float(cnt) print("Inference: {} ms per batch image".format(ms)) clsid2catid, catid2name = get_category_info(conf['with_background'], conf['label_list']) bbox_result = get_bbox_result(outs[0], res, conf, clsid2catid) mask_result = None if 'mask_resolution' in conf: res['im_shape'] = img_data[-1] mask_result = get_mask_result(outs, res, conf, clsid2catid) if FLAGS.visualize: visualize(bbox_result, catid2name, len(conf['label_list']), mask_result) if FLAGS.dump_result: import json bbox_file = os.path.join(FLAGS.output_dir, 'bbox.json') logger.info('dump bbox to {}'.format(bbox_file)) with open(bbox_file, 'w') as f: json.dump(bbox_result, f) if mask_result is not None: mask_file = os.path.join(FLAGS.output_dir, 'mask.json') logger.info('dump mask to {}'.format(mask_file)) with open(mask_file, 'w') as f: json.dump(mask_result, f) if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--model_path", type=str, default=None, help="model path.") parser.add_argument( "--config_path", type=str, default=None, help="preprocess config path.") parser.add_argument( "--infer_img", type=str, default=None, help="Image path") parser.add_argument( "--visualize", action='store_true', default=False, help="Whether to visualize detection output") parser.add_argument( "--output_dir", type=str, default="output", help="Directory for storing the output visualization files.") parser.add_argument( "--dump_result", action='store_true', default=False, help="Whether to dump result") FLAGS = parser.parse_args() infer()