_BASE_: [ '../datasets/roadsign_voc.yml', '../runtime.yml', '_base_/yolov3_mobilenet_v1.yml', '_base_/yolov3_reader.yml', ] pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/dygraph/yolov3_mobilenet_v1_270e_coco.pdparams load_static_weights: false norm_type: sync_bn weights: output/yolov3_mobilenet_v1_roadsign/model_final metric: VOC map_type: integral YOLOv3Loss: ignore_thresh: 0.7 label_smooth: true TrainReader: inputs_def: num_max_boxes: 50 sample_transforms: - Decode: {} - Mixup: {alpha: 1.5, beta: 1.5} - RandomDistort: {} - RandomExpand: {fill_value: [123.675, 116.28, 103.53]} - RandomCrop: {} - RandomFlip: {} batch_transforms: - BatchRandomResize: target_size: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608] random_size: True random_interp: True keep_ratio: False - NormalizeBox: {} - PadBox: {num_max_boxes: 50} - BboxXYXY2XYWH: {} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} - Permute: {} - Gt2YoloTarget: anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]] downsample_ratios: [32, 16, 8] num_classes: 4 batch_size: 8 shuffle: true drop_last: true snapshot_epoch: 2 epoch: 40 LearningRate: base_lr: 0.0001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [32, 36] - !LinearWarmup start_factor: 0.3333333333333333 steps: 100 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2