architecture: DETR # pretrain_weights: # rewrite in FocalNet.pretrained in ppdet/modeling/backbones/focalnet.py pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/focalnet_large_lrf_384_fl4_pretrained.pdparams hidden_dim: 256 use_focal_loss: True DETR: backbone: FocalNet transformer: DINOTransformer detr_head: DINOHead post_process: DETRPostProcess FocalNet: arch: 'focalnet_L_384_22k_fl4' out_indices: [1, 2, 3] pretrained: https://bj.bcebos.com/v1/paddledet/models/pretrained/focalnet_large_lrf_384_fl4_pretrained.pdparams DINOTransformer: num_queries: 900 position_embed_type: sine num_levels: 4 nhead: 8 num_encoder_layers: 6 num_decoder_layers: 6 dim_feedforward: 2048 dropout: 0.0 activation: relu pe_temperature: 20 pe_offset: 0.0 num_denoising: 100 label_noise_ratio: 0.5 box_noise_scale: 1.0 learnt_init_query: True DINOHead: loss: name: DINOLoss loss_coeff: {class: 1, bbox: 5, giou: 2} aux_loss: True matcher: name: HungarianMatcher matcher_coeff: {class: 2, bbox: 5, giou: 2} DETRPostProcess: num_top_queries: 300