# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The controller used to search hyperparameters or neural architecture""" import numpy as np import copy import math import logging __all__ = ['EvolutionaryController', 'SAController'] logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s') _logger = logging.getLogger(__name__) _logger.setLevel(logging.INFO) class EvolutionaryController(object): """Abstract controller for all evolutionary searching method. """ def __init__(self, *args, **kwargs): pass def update(self, tokens, reward): """Update the status of controller according current tokens and reward. Args: tokens(list): A solution of searching task. reward(list): The reward of tokens. """ raise NotImplementedError('Abstract method.') def reset(self, range_table, constrain_func=None): """Reset the controller. Args: range_table(list): It is used to define the searching space of controller. The tokens[i] generated by controller should be in [0, range_table[i]). constrain_func(function): It is used to check whether tokens meet the constraint. None means there is no constraint. Default: None. """ raise NotImplementedError('Abstract method.') def next_tokens(self): """Generate new tokens. """ raise NotImplementedError('Abstract method.') class SAController(EvolutionaryController): """Simulated annealing controller.""" def __init__(self, range_table=None, reduce_rate=0.85, init_temperature=1024, max_iter_number=300): """Initialize. Args: range_table(list): Range table. reduce_rate(float): The decay rate of temperature. init_temperature(float): Init temperature. max_iter_number(int): max iteration number. """ super(SAController, self).__init__() self._range_table = range_table self._reduce_rate = reduce_rate self._init_temperature = init_temperature self._max_iter_number = max_iter_number self._reward = -1 self._tokens = None self._max_reward = -1 self._best_tokens = None self._iter = 0 def __getstate__(self): d = {} for key in self.__dict__: if key != "_constrain_func": d[key] = self.__dict__[key] return d def reset(self, range_table, init_tokens, constrain_func=None): """ Reset the status of current controller. Args: range_table(list): The range of value in each position of tokens generated by current controller. The range of tokens[i] is [0, range_table[i]). init_tokens(list): The initial tokens. constrain_func(function): The callback function used to check whether the tokens meet constraint. None means there is no constraint. Default: None. """ self._range_table = range_table self._constrain_func = constrain_func self._tokens = init_tokens self._iter = 0 def update(self, tokens, reward): """ Update the controller according to latest tokens and reward. Args: tokens(list): The tokens generated in last step. reward(float): The reward of tokens. """ self._iter += 1 temperature = self._init_temperature * self._reduce_rate**self._iter if (reward > self._reward) or (np.random.random() <= math.exp( (reward - self._reward) / temperature)): self._reward = reward self._tokens = tokens if reward > self._max_reward: self._max_reward = reward self._best_tokens = tokens _logger.info("iter: {}; max_reward: {}; best_tokens: {}".format( self._iter, self._max_reward, self._best_tokens)) _logger.info("current_reward: {}; current tokens: {}".format( self._reward, self._tokens)) def next_tokens(self): """ Get next tokens. """ tokens = self._tokens new_tokens = tokens[:] index = int(len(self._range_table) * np.random.random()) new_tokens[index] = ( new_tokens[index] + np.random.randint(self._range_table[index] - 1) + 1) % self._range_table[index] _logger.info("change index[{}] from {} to {}".format(index, tokens[ index], new_tokens[index])) if self._constrain_func is None: return new_tokens for _ in range(self._max_iter_number): if not self._constrain_func(new_tokens): index = int(len(self._range_table) * np.random.random()) new_tokens = tokens[:] new_tokens[index] = np.random.randint(self._range_table[index]) else: break return new_tokens