architecture: YOLOv3 pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar load_static_weights: true norm_type: sync_bn use_ema: true ema_decay: 0.9998 YOLOv3: backbone: MobileNetV3 neck: PPYOLOFPN yolo_head: YOLOv3Head post_process: BBoxPostProcess MobileNetV3: model_name: small scale: 1. with_extra_blocks: false extra_block_filters: [] feature_maps: [9, 12] PPYOLOFPN: feat_channels: [96, 304] coord_conv: true conv_block_num: 0 spp: true drop_block: true YOLOv3Head: anchors: [[11, 18], [34, 47], [51, 126], [115, 71], [120, 195], [254, 235]] anchor_masks: [[3, 4, 5], [0, 1, 2]] loss: YOLOv3Loss YOLOv3Loss: ignore_thresh: 0.5 downsample: [32, 16] label_smooth: false scale_x_y: 1.05 iou_loss: IouLoss IouLoss: loss_weight: 2.5 loss_square: true BBoxPostProcess: decode: name: YOLOBox conf_thresh: 0.005 downsample_ratio: 32 clip_bbox: true scale_x_y: 1.05 nms: name: MultiClassNMS keep_top_k: 100 nms_threshold: 0.45 nms_top_k: 1000 score_threshold: 0.005 normalized: false