# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os, sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4))) if parent_path not in sys.path: sys.path.append(parent_path) import unittest import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.framework import Program, program_guard from paddle.fluid.dygraph import base import ppdet.modeling.ops as ops from ppdet.modeling.tests.test_base import LayerTest class TestCollectFpnProposals(LayerTest): def test_collect_fpn_proposals(self): multi_bboxes_np = [] multi_scores_np = [] rois_num_per_level_np = [] for i in range(4): bboxes_np = np.random.rand(5, 4).astype('float32') scores_np = np.random.rand(5, 1).astype('float32') rois_num = np.array([2, 3]).astype('int32') multi_bboxes_np.append(bboxes_np) multi_scores_np.append(scores_np) rois_num_per_level_np.append(rois_num) paddle.enable_static() with self.static_graph(): multi_bboxes = [] multi_scores = [] rois_num_per_level = [] for i in range(4): bboxes = paddle.static.data( name='rois' + str(i), shape=[5, 4], dtype='float32', lod_level=1) scores = paddle.static.data( name='scores' + str(i), shape=[5, 1], dtype='float32', lod_level=1) rois_num = paddle.static.data( name='rois_num' + str(i), shape=[None], dtype='int32') multi_bboxes.append(bboxes) multi_scores.append(scores) rois_num_per_level.append(rois_num) fpn_rois, rois_num = ops.collect_fpn_proposals( multi_bboxes, multi_scores, 2, 5, 10, rois_num_per_level=rois_num_per_level) feed = {} for i in range(4): feed['rois' + str(i)] = multi_bboxes_np[i] feed['scores' + str(i)] = multi_scores_np[i] feed['rois_num' + str(i)] = rois_num_per_level_np[i] fpn_rois_stat, rois_num_stat = self.get_static_graph_result( feed=feed, fetch_list=[fpn_rois, rois_num], with_lod=True) fpn_rois_stat = np.array(fpn_rois_stat) rois_num_stat = np.array(rois_num_stat) paddle.disable_static() with self.dynamic_graph(): multi_bboxes_dy = [] multi_scores_dy = [] rois_num_per_level_dy = [] for i in range(4): bboxes_dy = base.to_variable(multi_bboxes_np[i]) scores_dy = base.to_variable(multi_scores_np[i]) rois_num_dy = base.to_variable(rois_num_per_level_np[i]) multi_bboxes_dy.append(bboxes_dy) multi_scores_dy.append(scores_dy) rois_num_per_level_dy.append(rois_num_dy) fpn_rois_dy, rois_num_dy = ops.collect_fpn_proposals( multi_bboxes_dy, multi_scores_dy, 2, 5, 10, rois_num_per_level=rois_num_per_level_dy) fpn_rois_dy = fpn_rois_dy.numpy() rois_num_dy = rois_num_dy.numpy() self.assertTrue(np.array_equal(fpn_rois_stat, fpn_rois_dy)) self.assertTrue(np.array_equal(rois_num_stat, rois_num_dy)) def test_collect_fpn_proposals_error(self): def generate_input(bbox_type, score_type, name): multi_bboxes = [] multi_scores = [] for i in range(4): bboxes = paddle.static.data( name='rois' + name + str(i), shape=[10, 4], dtype=bbox_type, lod_level=1) scores = paddle.static.data( name='scores' + name + str(i), shape=[10, 1], dtype=score_type, lod_level=1) multi_bboxes.append(bboxes) multi_scores.append(scores) return multi_bboxes, multi_scores paddle.enable_static() program = Program() with program_guard(program): bbox1 = paddle.static.data( name='rois', shape=[5, 10, 4], dtype='float32', lod_level=1) score1 = paddle.static.data( name='scores', shape=[5, 10, 1], dtype='float32', lod_level=1) bbox2, score2 = generate_input('int32', 'float32', '2') self.assertRaises( TypeError, ops.collect_fpn_proposals, multi_rois=bbox1, multi_scores=score1, min_level=2, max_level=5, post_nms_top_n=2000) self.assertRaises( TypeError, ops.collect_fpn_proposals, multi_rois=bbox2, multi_scores=score2, min_level=2, max_level=5, post_nms_top_n=2000) if __name__ == '__main__': unittest.main()