import gzip import math import paddle.v2 as paddle embsize = 32 hiddensize = 256 N = 5 def wordemb(inlayer): wordemb = paddle.layer.embedding( input=inlayer, size=embsize, param_attr=paddle.attr.Param( name="_proj", initial_std=0.001, learning_rate=1, l2_rate=0, sparse_update=True)) return wordemb def main(): # for local training cluster_train = False if not cluster_train: paddle.init(use_gpu=False, trainer_count=1) else: paddle.init( use_gpu=False, trainer_count=2, port=7164, ports_num=1, ports_num_for_sparse=1, num_gradient_servers=1) word_dict = paddle.dataset.imikolov.build_dict() dict_size = len(word_dict) firstword = paddle.layer.data( name="firstw", type=paddle.data_type.integer_value(dict_size)) secondword = paddle.layer.data( name="secondw", type=paddle.data_type.integer_value(dict_size)) thirdword = paddle.layer.data( name="thirdw", type=paddle.data_type.integer_value(dict_size)) fourthword = paddle.layer.data( name="fourthw", type=paddle.data_type.integer_value(dict_size)) nextword = paddle.layer.data( name="fifthw", type=paddle.data_type.integer_value(dict_size)) Efirst = wordemb(firstword) Esecond = wordemb(secondword) Ethird = wordemb(thirdword) Efourth = wordemb(fourthword) contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth]) hidden1 = paddle.layer.fc(input=contextemb, size=hiddensize, act=paddle.activation.Sigmoid(), layer_attr=paddle.attr.Extra(drop_rate=0.5), bias_attr=paddle.attr.Param(learning_rate=2), param_attr=paddle.attr.Param( initial_std=1. / math.sqrt(embsize * 8), learning_rate=1)) predictword = paddle.layer.fc(input=hidden1, size=dict_size, bias_attr=paddle.attr.Param(learning_rate=2), act=paddle.activation.Softmax()) def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 100 == 0: with gzip.open("batch-" + str(event.batch_id), 'w') as f: trainer.save_parameter_to_tar(f) result = trainer.test( paddle.batch( paddle.dataset.imikolov.test(word_dict, N), 32)) print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % ( event.pass_id, event.batch_id, event.cost, event.metrics, result.metrics) cost = paddle.layer.classification_cost(input=predictword, label=nextword) parameters = paddle.parameters.create(cost) adagrad = paddle.optimizer.AdaGrad( learning_rate=3e-3, regularization=paddle.optimizer.L2Regularization(8e-4)) trainer = paddle.trainer.SGD(cost, parameters, adagrad, is_local=not cluster_train) trainer.train( paddle.batch(paddle.dataset.imikolov.train(word_dict, N), 32), num_passes=30, event_handler=event_handler) if __name__ == '__main__': main()