# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import unittest import numpy as np import paddle.fluid as fluid from paddle.fluid import core from paddle.fluid.optimizer import SGDOptimizer from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC from paddle.fluid.imperative.base import to_variable class SimpleImgConvPool(fluid.imperative.PyLayer): def __init__(self, num_channels, filter_size, num_filters, pool_size, pool_stride, pool_padding=0, pool_type='max', global_pooling=False, conv_stride=1, conv_padding=0, conv_dilation=1, conv_groups=1, act=None, use_cudnn=False, param_attr=None, bias_attr=None): super(SimpleImgConvPool, self).__init__() # groups = 1 # dilation = [1, 1] # pad = [0, 0] # stride = [1, 1] # input_size = [2, 3, 5, 5] # NCHW # assert np.mod(input_size[1], groups) == 0 # f_c = input_size[1] // groups # filter_size = [6, f_c, 3, 3] self._conv2d = Conv2D( num_channels=num_channels, num_filters=num_filters, filter_size=filter_size, stride=conv_stride, padding=conv_padding, dilation=conv_dilation, groups=conv_groups, param_attr=None, bias_attr=None, use_cudnn=use_cudnn) self._pool2d = Pool2D( pool_size=pool_size, pool_type=pool_type, pool_stride=pool_stride, pool_padding=pool_padding, global_pooling=global_pooling, use_cudnn=use_cudnn) def forward(self, inputs): x = self._conv2d(inputs) x = self._pool2d(x) return x class MNIST(fluid.imperative.PyLayer): def __init__(self, param_attr=None, bias_attr=None): super(MNIST, self).__init__(param_attr=param_attr, bias_attr=bias_attr) self._simple_img_conv_pool_1 = SimpleImgConvPool( 1, 5, 20, 2, 2, act="relu") self._simple_img_conv_pool_2 = SimpleImgConvPool( 20, 5, 50, 2, 2, act="relu") pool_2_shape = 50 * 8 * 8 SIZE = 10 scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5 self._fc = FC(-1, 10, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.NormalInitializer( loc=0.0, scale=scale))) def forward(self, inputs): x = self._simple_img_conv_pool_1(inputs) x = self._simple_img_conv_pool_2(x) x = self._fc(x) return x class TestImperativeMnist(unittest.TestCase): def test_mnist_cpu_float32(self): with fluid.imperative.guard(): mnist = MNIST() x_data = np.random.rand(128, 1, 28, 28).astype('float32') img = to_variable(x_data) y_data = np.random.rand(128, 1).astype('int64') label = to_variable(y_data) label._stop_gradient = True predict = mnist(img) out = fluid.layers.cross_entropy(predict, label) out._backward() filter_grad = mnist._simple_img_conv_pool_1._conv2d._filter_param._gradient( ) # print(filter_grad) sgd = SGDOptimizer(learning_rate=1e-3) sgd.minimize(out) # np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) # with fluid.imperative.guard(): # mlp = MLP() # out = mlp(np_inp) # dy_out = out._numpy() # out._backward() # dy_grad = mlp._fc1._w._gradient() # with new_program_scope(): # inp = fluid.layers.data( # name="inp", shape=[2, 2], append_batch_size=False) # mlp = MLP() # out = mlp(inp) # param_grads = fluid.backward.append_backward( # out, parameter_list=[mlp._fc1._w.name])[0] # exe = fluid.Executor(fluid.CPUPlace()) # exe.run(fluid.default_startup_program()) # static_out, static_grad = exe.run( # feed={inp.name: np_inp}, # fetch_list=[out.name, param_grads[1].name]) # self.assertTrue(np.allclose(dy_out, static_out)) # self.assertTrue(np.allclose(dy_grad, static_grad)) if __name__ == '__main__': unittest.main()