/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/executor.h" #include #include "gtest/gtest.h" #include "paddle/framework/attribute.h" #include "paddle/framework/grad_op_builder.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/operator.h" USE_OP(elementwise_add); USE_OP(gaussian_random); USE_OP(feed); USE_OP(fetch); using std::string; using namespace paddle::platform; using namespace paddle::framework; typedef paddle::framework::BlockDesc proto_block; typedef paddle::framework::OpDesc proto_op; void add_gaussian_random_op(string var_name, std::vector& dim, proto_block* block) { // insert variable auto a = block->add_vars(); a->set_name(var_name); auto a_lt = a->mutable_lod_tensor(); a_lt->set_data_type(paddle::framework::DataType::FP32); for (int i : dim) { a_lt->add_dims(i); } // insert operation auto op = block->add_ops(); op->set_type("gaussian_random"); auto dims = op->add_attrs(); dims->set_name("dims"); dims->set_type(paddle::framework::AttrType::INTS); for (int i : dim) { dims->add_ints(i); } auto Out = op->add_outputs(); Out->set_parameter("Out"); Out->add_arguments(var_name); } void add_feed_op(string var_name, std::vector& dim, int index, proto_block* block) { // insert variable auto a = block->add_vars(); a->set_name(var_name); auto a_lt = a->mutable_lod_tensor(); a_lt->set_data_type(paddle::framework::DataType::FP32); for (int i : dim) { a_lt->add_dims(i); } // insert operation auto op = block->add_ops(); op->set_type("feed"); // set dims attr auto dims = op->add_attrs(); dims->set_name("dims"); dims->set_type(paddle::framework::AttrType::INTS); for (int i : dim) { dims->add_ints(i); } // set col attr auto col = op->add_attrs(); col->set_name("col"); col->set_type(paddle::framework::AttrType::INT); col->set_i(index); auto Out = op->add_outputs(); Out->set_parameter("Out"); Out->add_arguments(var_name); } void add_fetch_op(string var_name, std::vector& dim, int index, proto_block* block) { // insert variable auto a = block->add_vars(); a->set_name(var_name); auto a_lt = a->mutable_lod_tensor(); a_lt->set_data_type(paddle::framework::DataType::FP32); for (int i : dim) { a_lt->add_dims(i); } // insert operation auto op = block->add_ops(); op->set_type("fetch"); // set dims attr auto dims = op->add_attrs(); dims->set_name("dims"); dims->set_type(paddle::framework::AttrType::INTS); for (int i : dim) { dims->add_ints(i); } // set col attr auto col = op->add_attrs(); col->set_name("col"); col->set_type(paddle::framework::AttrType::INT); col->set_i(index); auto Out = op->add_inputs(); Out->set_parameter("Input"); Out->add_arguments(var_name); } std::once_flag set_variable_flag; template void set_feed_variable(const std::vector>& inputs) { typedef std::vector FeedInputs; // Tensors in feed value variable will only be in CPUPlace Variable* g_feed_value = GetGlobalScope()->FindVar("feed_value"); FeedInputs& feed_inputs = *(g_feed_value->GetMutable()); auto size = inputs.size(); feed_inputs.resize(size); for (size_t i = 0; i < size; i++) { T* dst = feed_inputs[i].mutable_data( make_ddim({static_cast(inputs[i].size())}), CPUPlace()); memcpy(dst, inputs[i].data(), inputs[i].size() * sizeof(T)); } } template std::vector> get_fetch_variable() { typedef std::vector FetchOutputs; // Tensors in fetch value variable will only be in CPUPlace Variable* g_fetch_value = GetGlobalScope()->FindVar("fetch_value"); FetchOutputs& fetch_outputs = *(g_fetch_value->GetMutable()); auto size = fetch_outputs.size(); std::vector> result; result.reserve(size); for (size_t i = 0; i < size; i++) { std::vector tmp; tmp.resize(fetch_outputs[i].numel()); memcpy(tmp.data(), fetch_outputs[i].data(), fetch_outputs[i].numel() * sizeof(T)); result.push_back(tmp); } return result; } class ExecutorTesterRandom : public ::testing::Test { public: virtual void SetUp() override { auto root_block = pdesc_.add_blocks(); root_block->set_idx(0); root_block->set_parent_idx(-1); std::vector dim{2, 3}; add_gaussian_random_op("a", dim, root_block); add_gaussian_random_op("b", dim, root_block); auto c = root_block->add_vars(); c->set_name("c"); auto c_lt = c->mutable_lod_tensor(); c_lt->set_data_type(paddle::framework::DataType::FP32); auto op = root_block->add_ops(); op->set_type("elementwise_add"); auto X = op->add_inputs(); X->set_parameter("X"); X->add_arguments("a"); auto Y = op->add_inputs(); Y->set_parameter("Y"); Y->add_arguments("b"); auto Out = op->add_outputs(); Out->set_parameter("Out"); Out->add_arguments("c"); add_fetch_op("c", dim, 0, root_block); } protected: ProgramDesc pdesc_; }; class ExecutorTesterFeed : public ::testing::Test { public: virtual void SetUp() override { auto root_block = pdesc_.add_blocks(); root_block->set_idx(0); root_block->set_parent_idx(-1); std::vector dim{6}; add_feed_op("a", dim, 0, root_block); add_feed_op("b", dim, 1, root_block); auto c = root_block->add_vars(); c->set_name("c"); auto c_lt = c->mutable_lod_tensor(); c_lt->set_data_type(paddle::framework::DataType::FP32); auto op = root_block->add_ops(); op->set_type("elementwise_add"); auto X = op->add_inputs(); X->set_parameter("X"); X->add_arguments("a"); auto Y = op->add_inputs(); Y->set_parameter("Y"); Y->add_arguments("b"); auto Out = op->add_outputs(); Out->set_parameter("Out"); Out->add_arguments("c"); add_fetch_op("c", dim, 0, root_block); std::vector vec1 = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0}; std::vector vec2 = {4.0, 5.0, 6.0, 7.0, 8.0, 9.0}; inputs_.push_back(vec1); inputs_.push_back(vec2); } protected: ProgramDesc pdesc_; std::vector> inputs_; }; #ifndef PADDLE_WITH_CUDA TEST_F(ExecutorTesterRandom, CPU) { std::vector places; CPUPlace cpu_place; places.push_back(cpu_place); // We have a global Scope and BuddyAllocator, and we must ensure // global BuddyAllocator is initialized before global Scope. Thus, // global Scope will deconstruct before BuddyAllocator. Otherwise, // "pointer being freed was not allocated" error will appear. paddle::memory::Used(cpu_place); Executor* executor = new Executor(places); executor->Run(pdesc_, GetGlobalScope()); std::vector> result = get_fetch_variable(); for (auto& vec : result) { for (auto& num : vec) { std::cout << num << " "; } std::cout << std::endl; } delete executor; } TEST_F(ExecutorTesterFeed, CPU) { std::vector places; CPUPlace cpu_place; places.push_back(cpu_place); // We have a global Scope and BuddyAllocator, and we must ensure // global BuddyAllocator is initialized before global Scope. Thus, // global Scope will deconstruct before BuddyAllocator. Otherwise, // "pointer being freed was not allocated" error will appear. paddle::memory::Used(cpu_place); Executor* executor = new Executor(places); // 3 mini-batch for (int i = 0; i < 3; i++) { // need to set feed variable before Executor::Run std::cout << "start mini-batch " << i << std::endl; set_feed_variable(inputs_); executor->Run(pdesc_, GetGlobalScope()); std::vector> result = get_fetch_variable(); for (auto& vec : result) { for (auto& num : vec) { std::cout << num << " "; } std::cout << std::endl; } } delete executor; } #else TEST_F(ExecutorTesterRandom, GPU) { std::vector places; GPUPlace gpu_place(0); places.push_back(gpu_place); // We have a global Scope and BuddyAllocator, and we must ensure // global BuddyAllocator is initialized before global Scope. Thus, // global Scope will deconstruct before BuddyAllocator. Otherwise, // "pointer being freed was not allocated" error will appear. // If paddle is compiled with GPU, both CPU and GPU BuddyAllocator // need to be used at first. paddle::memory::Used(CPUPlace()); paddle::memory::Used(gpu_place); Executor* executor = new Executor(places); executor->Run(pdesc_, GetGlobalScope()); delete executor; } TEST_F(ExecutorTesterFeed, GPU) { std::vector places; GPUPlace gpu_place(0); places.push_back(gpu_place); // We have a global Scope and BuddyAllocator, and we must ensure // global BuddyAllocator is initialized before global Scope. Thus, // global Scope will deconstruct before BuddyAllocator. Otherwise, // "pointer being freed was not allocated" error will appear. // If paddle is compiled with GPU, both CPU and GPU BuddyAllocator // need to be used at first. paddle::memory::Used(CPUPlace()); paddle::memory::Used(gpu_place); Executor* executor = new Executor(places); // 3 mini-batch for (int i = 0; i < 3; i++) { // need to set feed variable before Executor::Run std::cout << "start mini-batch " << i << std::endl; set_feed_variable(inputs_); executor->Run(pdesc_, GetGlobalScope()); std::vector> result = get_fetch_variable(); for (auto& vec : result) { for (auto& num : vec) { std::cout << num << " "; } std::cout << std::endl; } } delete executor; } #endif