# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import copy import numpy as np from .framework import Variable, default_main_program, default_startup_program, _in_imperative_mode, _current_expected_place from . import unique_name from .param_attr import ParamAttr, WeightNormParamAttr from . import core class LayerHelperBase(object): def __init__(self, name, layer_type): self._layer_type = layer_type self._name = name @property def name(self): return self._name @property def layer_type(self): return self._layer_type @property def main_program(self): return default_main_program() @property def startup_program(self): return default_startup_program() def to_variable(self, value, block=None): """convert value to variable Args: value: value to be convert block: the block of the variable Return Variable construct from value """ if isinstance(value, np.ndarray): assert _in_imperative_mode( ), "to_variable could only be called in imperative mode" if not block: block = default_main_program().current_block() py_var = Variable( block, type=core.VarDesc.VarType.LOD_TENSOR, name=None, shape=value.shape, dtype=value.dtype) var = py_var._ivar.value() tensor = var.get_tensor() tensor.set(value, _current_expected_place()) return py_var elif isinstance(value, Variable): return value def _create_weight_normalize(self, attr, shape, dtype): from .layers import elementwise_mul, elementwise_div, reshape # Remove these ops when LayerHelper and layers support indicating # program and block. def __norm_op(x, out=None, p=2, dim=None, keep_dim=False, block=self.startup_program.global_block()): if out is None: out = block.create_var( name=unique_name.generate(".".join( [self.name, 'weight_norm_norm'])), dtype=dtype, persistable=False) abs_out = block.create_var( name=unique_name.generate(".".join( [self.name, 'weight_norm_abs'])), dtype=dtype, persistable=False) block.append_op( type='abs', inputs={'X': x}, outputs={'Out': abs_out}) pow_out = block.create_var( name=unique_name.generate(".".join( [self.name, 'weight_norm_pow'])), dtype=dtype, persistable=False) block.append_op( type='pow', inputs={'X': abs_out}, outputs={'Out': pow_out}, attrs={'factor': float(p)}) sum_out = block.create_var( name=unique_name.generate(".".join( [self.name, 'weight_norm_sum'])), dtype=dtype, persistable=False) block.append_op( type='reduce_sum', inputs={'X': pow_out}, outputs={'Out': sum_out}, attrs={ 'dim': dim, 'keep_dim': keep_dim, 'reduce_all': True if dim is None else False }) block.append_op( type='pow', inputs={'X': sum_out}, outputs={'Out': out}, attrs={'factor': 1. / p}) return out def __reshape_op(x, shape, out=None, block=self.startup_program.global_block()): if out is None: out = block.create_var( name=unique_name.generate(".".join( [self.name, 'weight_norm_reshape'])), dtype=dtype, persistable=False) block.append_op( type='reshape', inputs={'X': x}, outputs={'Out': out}, attrs={'shape': shape}) return out def __transpose_op(x, axis, out=None, block=self.startup_program.global_block()): if out is None: out = block.create_var( name=unique_name.generate(".".join( [self.name, 'weight_norm_transpose'])), dtype=dtype, persistable=False) block.append_op( type='transpose', inputs={'X': x}, outputs={'Out': out}, attrs={'axis': axis}) return out def __norm_except_dim(x, out=None, dim=None, block=self.startup_program.global_block()): """Computes the norm over all dimensions except dim""" if out is None: out = block.create_var( name=unique_name.generate(".".join( [self.name, 'weight_norm_norm'])), dtype=dtype, persistable=False) if dim is None: __norm_op(x, out, dim=dim, block=block) elif dim == 0: out_shape = [x.shape[0]] + [1] * (len(x.shape) - 1) reshape = __reshape_op(x, shape=[x.shape[0], -1], block=block) norm = __norm_op(reshape, dim=1, block=block) __reshape_op(norm, out=out, shape=out_shape, block=block) elif dim == len(x.shape) - 1: out_shape = [1] * (len(x.shape) - 1) + [x.shape[-1]] reshape = __reshape_op(x, shape=[-1, x.shape[-1]], block=block) norm = __norm_op(reshape, dim=0, block=block) __reshape_op(norm, out=out, shape=out_shape, block=block) else: perm = list(range(len(x.shape))) perm[0], perm[dim] = dim, 0 transpose = __transpose_op(x, perm, block=block) norm = __norm_op(transpose, dim=0, block=block) __transpose_op(norm, perm, out=out, block=block) return out def __weight_normalize(g, v, dim): """Calculations for weight normalization""" norm = __norm_except_dim( v, dim=dim, block=self.main_program.current_block()) scale = elementwise_div( x=g, y=norm) # The shapes of g and norm are the same. # Currently, elementwise_mul only support broadcast when the shape # of y is a subset of the shape of x. Thus, we reshape y to squeeze # to achive the subset. w = elementwise_mul( x=v, y=scale if dim is None else reshape( x=scale, shape=[v.shape[dim]]), axis=-1 if dim is None else dim) # To serialize the original parameter for inference, maybe a # parameter rather than a variable should be returned. return w g_param_attr = copy.deepcopy(attr) g_param_attr.name = attr.name + '_g' g_param_shape = [1] * len(shape) if attr.dim is not None: g_param_shape[attr.dim] = shape[attr.dim] v_param_attr = copy.deepcopy(attr) v_param_attr.name = attr.name + '_v' v_param_shape = shape # Add to startup_program to initialize g and v. # Try to reconstruct the initializer of w by initializing g and v. # Set the initializers of g and v as below, then the distribution # of w is the same as initializing w with the given initializer. # For Data-Dependent Initialization, please compute the init-values # of g and v in external and then feed the values to g and v by # executing an extra program. g_param = self.startup_program.global_block().create_parameter( dtype=dtype, shape=g_param_shape, **g_param_attr._to_kwargs(with_initializer=False)) v_param = self.startup_program.global_block().create_parameter( dtype=dtype, shape=v_param_shape, **v_param_attr._to_kwargs(with_initializer=True)) __norm_except_dim( x=v_param, out=g_param, dim=attr.dim, block=self.startup_program.global_block()) # Add weight normalization to main_program g_param = self.main_program.global_block().create_parameter( dtype=dtype, shape=g_param_shape, **g_param_attr._to_kwargs()) v_param = self.main_program.global_block().create_parameter( dtype=dtype, shape=v_param_shape, **v_param_attr._to_kwargs()) w_param = __weight_normalize(g_param, v_param, dim=attr.dim) return w_param # TODO: hide the func after we move the layers to Layers def create_parameter(self, attr, shape, dtype, is_bias=False, default_initializer=None): """Create parameters for this layers. Args: attr: [ParamAttr] should be the parameter attribute for this parameter shape: shape of the paramter dtype: data type of this parameter is_bias: if this is a bias parameter default_initializer: set the default initializer for this parameter Returns created parameter Variable. """ # Deepcopy the attr so that parameters can be shared in program attr = copy.deepcopy(attr) if attr is None: attr = ParamAttr._to_attr(attr) assert isinstance(attr, ParamAttr) suffix = 'b' if is_bias else 'w' if attr.name is None: attr.name = unique_name.generate(".".join([self.name, suffix])) if default_initializer is None and attr.initializer is None: if isinstance(dtype, core.VarDesc.VarType): if dtype != core.VarDesc.VarType.FP32 and \ dtype != core.VarDesc.VarType.FP64 and \ dtype != core.VarDesc.VarType.FP16: raise TypeError( "Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!" ) else: if not (dtype.startswith("float") or dtype == "double"): raise TypeError( "Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!" ) if is_bias: attr._set_default_bias_initializer() else: attr._set_default_param_initializer() else: attr._set_default_initializer(default_initializer) # If weight normalization is set, insert extra parameters and ops. # Refer to https://arxiv.org/pdf/1602.07868.pdf if isinstance(attr, WeightNormParamAttr): param = self._create_weight_normalize(attr, shape, dtype) WeightNormParamAttr.params_with_weight_norm.append(param) return param if _in_imperative_mode(): # In imperative mode, we want the returned parameter to be # initialized so that it can be used imperatively. return self.main_program.global_block().create_parameter( dtype=dtype, shape=shape, **attr._to_kwargs(with_initializer=True)) else: self.startup_program.global_block().create_parameter( dtype=dtype, shape=shape, **attr._to_kwargs(with_initializer=True)) return self.main_program.global_block().create_parameter( dtype=dtype, shape=shape, **attr._to_kwargs()) def create_variable_for_type_inference(self, dtype, stop_gradient=False): """Create a temporary variable that should be type inferred layer. Note: The default type will be set to LOD_TENSOR. However, when the var is used as operator output, its type will be updated based on operator's `VarTypeInference` implementation in infer_var_type. """ return self.main_program.current_block().create_var( name=unique_name.generate(".".join([self.name, 'tmp'])), dtype=dtype, type=core.VarDesc.VarType.LOD_TENSOR, persistable=False, stop_gradient=stop_gradient) def create_variable(self, *args, **kwargs): """Create Variable for this layers. Returns created Variable. """ return self.main_program.current_block().create_var(*args, **kwargs) def create_global_variable(self, persistable=False, *args, **kwargs): """ create global variable, note that there is no initializer for this global variable. Args: persistable(bool): True if it is a checkpoint value. *args: See create_var's documentation **kwargs: See create_var's documentation Returns(Variable): the created variable. """ return self.main_program.global_block().create_var( *args, persistable=persistable, **kwargs) def create_or_get_global_variable(self, name, *args, **kwargs): """ Creates a global variable if not exists and returns the variable and a boolean flag which is true when it is a new variable. """ if self.main_program.global_block().has_var(name): return self.main_program.global_block().var(name), False else: return self.create_global_variable(name=name, *args, **kwargs), True def set_variable_initializer(self, var, initializer): """Set target Variable's initializer Args: var: target Variable initializer: initializer to use """ assert isinstance(var, Variable) if _in_imperative_mode(): initializer(var, var.block) else: self.startup_program.global_block().create_var( name=var.name, type=var.type, dtype=var.dtype, shape=var.shape, persistable=True, initializer=initializer)